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Grassmann variety and subspace codes

Let V be a vector space of dimension n over a field F.

Definition
The Grassmann variety Grass(k ,V ) is the set of all k -dimensional
subspaces U ⊂ V .

Remark
A subset C⊂ Grass(k ,V ) can be viewed as a constant dimensional
subspace code.

Question: Why is Grass(k ,V ) a variety?
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Plücker Embedding

Consider the vector space of alternating k–tensors ∧kV . Let
P(∧kV ) be the projective space consisting of all lines in ∧kV .

The Plücker embedding is defined through:

ϕ : Grass(k ,V ) −→ P(∧kV ) (1)
span(v1, . . . ,vk ) 7−→ Fv1∧·· ·∧vk .
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Background from linear algebra

Let {e1, . . . ,en} be a basis of V .

Then
{ei1 ∧·· ·∧eik | 1≤ i1 < · · ·< ik ≤ n}

is a basis of ∧kV .

In particular:

dim∧kV =

(
dimV

k
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=

(
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In particular: ∧nV = F and ∧n+1V = {0}.
Note that the expressions v1∧·· ·∧vk are linear in each
component and alternating.
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Plücker Coordinates

Assume

vi =
n

∑
j=1

aijej , i = 1, . . . ,k .

Let A be the k ×n matrix (ai ,j). The Plücker embedding writes:

ϕ : Matk×n −→ P(∧kV ) (2)
rowspace(A) 7−→ ∑

1≤i1<···<ik≤n
xi1,...,ik ·ei1 ∧ . . .∧eik .

The coordinates xi := xi1,...,ik are called the Plücker coordinates
of rowspace(A).



Example Plücker Coordinates

Consider the subspace

rowspace
(

1 0 2 0
0 1 3 6

)

Then its Plücker coordinates are:

(1,3,6,−2,0,12).

Question: Does every 6-vector appear as the Plücker
coordinates of some subspace?

Answer: No.
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Shuffle Relations

Theorem
k+1

∑
λ=1

(−1)λ ·xi1,...,ik−1,jλ ·xj1,...,ĵλ ,...,jk+1
= 0 (3)

describes the image of the Grassmannian in the projective
space P(∧kV )

Example

Grass(2,F4) is embedded in P5 and ϕ(Grass(2,4)) is described
by a single relation

x12x34−x13x24 +x14x23 = 0 (4)



Shuffle Relations

Theorem
k+1

∑
λ=1

(−1)λ ·xi1,...,ik−1,jλ ·xj1,...,ĵλ ,...,jk+1
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Shuffle Relations

Example

Grass(2,F5) is embedded in P9 and the defining relations are:

x12x34−x13x24 +x14x23 = 0
x12x35−x13x25 +x15x23 = 0
x12x45−x14x25 +x15x14 = 0
x13x45−x14x35 +x15x34 = 0
x23x45−x24x35 +x25x34 = 0



Importance in Network Coding

Metric on Grassmannian: If U,W ∈ Grass(k ,V ) are two
subspaces one defines its distance as:

d(U,W ) := dim(U +W )−dim(U ∩W ).

Question: What is the algebraic structure of the balls of radius
t around an element W ∈ Grass(k ,V )?

Answer: d(U,W )≤ t if and only if dim(U ∩W )≥ k − t/2 =: r .

Remark
The ball of radius t around the subspace W defines a so called
Schubert variety:

{U ∈ Grass(k ,V ) | d(U,W )≤ t}
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Geometric Questions of Schubert

Hermann Schubert studied in the 19th century geometric
questions of the following type:

Example
Given 4 lines in 3-space in general position. Is there a line
intersecting all 4 lines.

Answer Schubert: By Poncelet’s principle of conservation of
numbers we can assume lines 1 and 2 intersect and lines 3 and
4 intersect. So there are 2 solutions in general.
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Geometric Questions of Schubert

Theorem (Schubert [Sch79])

Given N := k(n−k) linear subspace Ui , i = 1, . . . ,N in V having
dimension k each. If the base field F is algebraically closed and
the subspaces are in general position then there exist exactly

1!2! · · ·(k −1)!(N)!

(n−k)!(n−k +1)! · · ·(n−1)!
(5)

subspaces W of dimension (n−k) intersecting each of the
subspaces Ui nontrivially.



Hermann Cäsar Hannibal Schubert (1848-1911)



Hilbert Problem Number 15, Paris 1900
Rigorous foundation of Schubert’s enumerative calculus

The problem consists in this: To establish rigorously and with
an exact determination of the limits of their validity those
geometrical numbers which Schubert especially has
determined on the basis of the so-called principle of special
position, or conservation of number, by means of the
enumerative calculus developed by him.
Although the algebra of today guarantees, in principle, the
possibility of carrying out the processes of elimination, yet for
the proof of the theorems of enumerative geometry decidedly
more is requisite, namely, the actual carrying out of the process
of elimination in the case of equations of special form in such a
way that the degree of the final equations and the multiplicity of
their solutions may be foreseen.



David Hilbert (1862-1943)



Schubert Varieties

Definition
A flag F is a sequence of nested subspaces

{0} ⊂ V1 ⊂ V2 ⊂ . . .⊂ Vn = V (6)

where we assume that dimVi = i for i = 1, . . . ,n.

Let i = (i1, . . . , ik ) denote a sequence of numbers having the
property that

1≤ i1 < .. . < ik ≤ n. (7)

Definition
For each flag F and each multiindex i

C(i ;F ) := {W ∈ Grass(k ,V ) | dim(W
⋂

Vis) = s}

is called a Schubert cell.
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The closure of the cell C(i ;F ) is the Schubert variety S(i ;F ). The
equations describing the variety S(i ;F ) consists of the quadratic
equations describing the Grassmann variety and some additional
linear equations.
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Schubert Varieties

Remark
If {e1, . . . ,en} is a basis of V and F is the standard flag with respect
to this basis then C(i ;F ) consists of all subspaces having a certain
row reduced echelon form:
∗ · · · ∗ 1 0 · · · 0 0 · · · 0 · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 · · · 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 · · · ∗ · · · ∗ 1 0 · · · 0





Central Question of Schubert Calculus

Problem

Given two Schubert varieties S(ν ;F ) and S(ν̃ ;F̃ ). Describe
as explicitly as possible the intersection variety

S(ν ;F )∩S(ν̃ ;F̃ ).

Remark
Schubert’s Theorem can actually also be formulated as an intersection
problem of Schubert varieties. For this note that{

V ∈ Grass(k ,Fk+m) | V
⋂

Ui 6= {0}
}

(8)

is a Schubert variety.
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Defining Equations of Schubert Varieties

Bruhat order:
Let i := (i1, . . . , ik ) and j := (j1, . . . , jk ) be two set of indices
satisfying

1≤ i1 < .. . < ik ≤ n

respectively
1≤ j1 < .. . < jk ≤ n.

Then one defines:
i ≤ j

if and only if it ≤ jt for t = 1, . . . ,k .

Theorem
The defining equations in terms of Plücker coordinates of the
Schubert variety S(i ;F ) are given by the quadratic shuffle
relations together with the linear equations xj = 0 for all j 6≤ i .
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Application to Sum of Hermitian Matrices

Given Hermitian matrices A1, . . . ,Ar ∈ Cn×n each with a fixed
spectrum

λ1(Al)≥ . . .≥ λn(Al), l = 1, . . . , r (9)

and arbitrary else.

Using the ordered set of eigenvectors one constructs for each
Hermitian matrix Al the flag:

Fl : {0} ⊂ V1l ⊂ V2l ⊂ . . .⊂ Vnl = Cn (10)

defined through the property:

Vml := span(v1l , . . . ,vml) m = 1, . . . ,n. (11)



Application to Sum of Hermitian Matrices

Given Hermitian matrices A1, . . . ,Ar ∈ Cn×n each with a fixed
spectrum

λ1(Al)≥ . . .≥ λn(Al), l = 1, . . . , r (9)

and arbitrary else.
Using the ordered set of eigenvectors one constructs for each
Hermitian matrix Al the flag:

Fl : {0} ⊂ V1l ⊂ V2l ⊂ . . .⊂ Vnl = Cn (10)

defined through the property:

Vml := span(v1l , . . . ,vml) m = 1, . . . ,n. (11)



Result of Helmke and Rosenthal [HR95]

Let A1, . . . ,Ar be complex Hermitian n×n matrices with
associated flags F1, . . . ,Fr+1. Assume Ar+1 = A1 + · · ·+Ar and
let i l = (i1l , . . . , ikl) be r +1 sequences of integers satisfying

1≤ i1l < .. . < ikl ≤ n, l = 1, . . . , r +1. (12)

If the r +1 Schubert subvarieties satisfy:

S(i1;F1)
⋂

. . .
⋂

S(i r+1;Fr+1) 6= /0. (13)

Then the following matrix eigenvalue inequalities hold:

k

∑
j=1

λn−ij ,r+1+1(A1 + · · ·+Ar )≥
r

∑
l=1

k

∑
j=1

λijl (Al) (14)

k

∑
j=1

λij ,r+1(A1 + · · ·+Ar )≤
r

∑
l=1

k

∑
j=1

λn−ijl+1(Al). (15)



Result of Helmke and Rosenthal [HR95]

Let A1, . . . ,Ar be complex Hermitian n×n matrices with
associated flags F1, . . . ,Fr+1. Assume Ar+1 = A1 + · · ·+Ar and
let i l = (i1l , . . . , ikl) be r +1 sequences of integers satisfying

1≤ i1l < .. . < ikl ≤ n, l = 1, . . . , r +1. (12)

If the r +1 Schubert subvarieties satisfy:

S(i1;F1)
⋂

. . .
⋂

S(i r+1;Fr+1) 6= /0. (13)

Then the following matrix eigenvalue inequalities hold:

k

∑
j=1

λn−ij ,r+1+1(A1 + · · ·+Ar )≥
r

∑
l=1

k

∑
j=1

λijl (Al) (14)

k

∑
j=1

λij ,r+1(A1 + · · ·+Ar )≤
r

∑
l=1

k

∑
j=1

λn−ijl+1(Al). (15)



Symbolic Schubert Calculus

Theorem

For every fixed flag F the Schubert cells C(i ;F ) decompose
the Grassmann variety Grass(k ,Cn) into a finite cellular
CW–complex. The integral homology H2m(Grass(k ,Cn),Z) has
no torsion and is freely generated by the fundamental classes
of the Schubert varieties S(i ;F ) of real dimension 2m.

The Poincaré-dual of the class (i1, . . . , ik ) will be denoted by

{µ1, . . . ,µk} := {n−k − i1 +1,n−k − i2 +2, . . . ,n− ik}. (16)

viewed as an element of the cohomolgy ring
H∗(Grass(k ,Cn),Z).
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Schubert Calculus

The cohomology ring

H∗(Grass(k ,Cn),Z) :=
k(n−k)⊕

m=0

H2m(k ,Cn),Z) (17)

has in a natural way the structure of a graded ring.

σj := {j ,0, . . . , . . . ,0} j = 1, . . . ,n−k . (18)

denotes the j th Chern class.
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Schubert Calculus

Computations in the cohomology ring are done by the classical
formulas of Pieri and Giambelli and by the Littlewood
Richardson rule:

Pieri’s formula:

{µ1, . . . ,µk} ·σj = ∑
µi−1≥νi≥µi

∑
k
i=1 νi=(∑k

i=1 µi )+j

{ν1, . . . ,νk}

Giambelli’s formula:

{µ1, . . . ,µk} = = det


σµ1 σµ1+1 . . . σµ1+k−1

σµ2−1 σµ2

...
...

. . .
...

σµk−k+1 . . . σµk
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Example of Schubert Calculus

Example
Given 4 lines in 3-space in general position. Is there a line
intersecting all 4 lines.

Geometric Problem: Intersection of Schubert varieties of the
form S(2,4) inside the Grassmannian Grass(2,F4).

Algebraic Problem: One has the equation of Grass(2,F4):

x12x34−x13x24 +x14x23 = 0

together with 4 linear equations describing the 4 Schubert
varieties. 7−→ 2 Solutions.

Cohomology ring:

{1,0}{1,0}{1,0}{1,0}= 2{2,2}.
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List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received
subspace W ⊂ V , whose dimension is not necessarily k .

Consider the Schubert variety.

SW := {U ∈ Grass(k ,V ) | d(U,W )≤ t}

Find efficient methods to compute:

SW
⋂

C



List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received
subspace W ⊂ V , whose dimension is not necessarily k .

Consider the Schubert variety.

SW := {U ∈ Grass(k ,V ) | d(U,W )≤ t}

Find efficient methods to compute:

SW
⋂

C



List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received
subspace W ⊂ V , whose dimension is not necessarily k .

Consider the Schubert variety.

SW := {U ∈ Grass(k ,V ) | d(U,W )≤ t}

Find efficient methods to compute:

SW
⋂

C



List Decoding Problem

Given a subspace code C ⊂ Grass(k ,V ) and a received
subspace W ⊂ V , whose dimension is not necessarily k .

Consider the Schubert variety.

SW := {U ∈ Grass(k ,V ) | d(U,W )≤ t}

Find efficient methods to compute:

SW
⋂

C



W. Fulton, Intersection theory, Ergebnisse der Mathematik
und ihrer Grenzgebiete, Springer Verlag, Berlin,
Heidelberg, New York, 1984.

H. Hiller, Combinatorics and intersections of Schubert
varieties, Comment. Math. Helv. 57 (1982), no. 1, 41–59.

U. Helmke and J. Rosenthal, Eigenvalue inequalities and
Schubert calculus, Mathematische Nachrichten 171 (1995),
207 – 225.

B. Huber, F. Sottile, and B. Sturmfels, Numerical Schubert
calculus, J. Symbolic Comput. 26 (1998), no. 6, 767–788,
Symbolic numeric algebra for polynomials.

S. L. Kleiman, Problem 15: Rigorous foundations of
Schubert’s enumerative calculus, Proceedings of Symposia
in Pure Mathematics, vol. 28, Am. Math. Soc., 1976,
pp. 445–482.
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