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Preface

About a year ago, I asked Prof. Dr. Leo Storme for a possible subject for my mas-
ter dissertation, preferably in my favourite mathematical domains, i.e. coding theory
and geometry. He suggested me among others to consider random network coding, a
recently established powerful concept for information transmission in a network, with
widespread applications for communication networks like the Internet, wireless commu-
nication systems and cloud computing. In the recent award-winning article of Kötter
and Kschischang ([28]), the network is viewed as a mechanism of transmitting not pack-
ets or vectors but rather the subspace that these packets span, which leads to a new
kind of coding theory employing subspace codes. After reading this article I was very
enthusiastic to look into this subject in more depth, to explore the links between new and
traditional concepts in different domains and to try to describe this in my thesis, which
can be seen as an introduction to the mathematical part of random network coding and
designs over Fq.
Furthermore, I like to mention COST Action IC1104 (see [9] or [10]), which sets up a
European research network about random network coding and designs over Fq and its
aim is to bring together experts from pure and applied mathematics, computer science,
and electrical engineering, who are working in the areas of discrete mathematics, coding
theory, information theory, and related fields.

The importance of collaboration is also clear from the quote of the American psychologist
Howard Gardiner, representing the vision of the COST Action ([11]):

“The tools from any one discipline are often insufficient for understanding
and solving real world problems highlighting the need for interdisciplinary
expertise and problem-centered teams of people working on common goals.”

Hereby, I had the opportunity to participate in the First European Training School on
Network Coding within the COST Action, which took place on February 4-8, 2013, at
the Autonomous University of Barcelona. Thanks to the interesting talks and useful
practical sessions with researchers, such as Kschischang and Etzion, I acquired a better
and broader view on the possibilities of this subject, gained new insight in the matter
and found the motivation and inspiration to proceed with my work.

I have written down the results of my discoveries in the wonderful world of network
codes and q-designs in this master dissertation, of which I will now shortly elucidate the
different chapters.

The aim of the first chapter is to introduce the basic concepts needed in the subsequent
chapters and to make it possible to establish a link between the concepts, theorems and
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proofs of traditional coding theory, design theory and graph theory. As a matter of
fact, a lot of new concepts are the q-analogues or q-generalizations of classical theorems,
identities or expressions.

The second chapter handles the general idea of random network coding and shows that
codes in Pq(n) are precisely what is needed for error-correction in networks: an (n,M, d)-
code can correct any t packet errors and any ρ erasures emerged anywhere in the network
as long as 2(t + ρ) < d. This motivates our interest in such codes and in a sense, one
would like to rederive as much as possible of the classical coding theory in the context
of Pq(n) and Gq(n, k) with the subspace metric.

In Chapter 3, we consider the main coding theory problem for codes in projective space.
In this chapter we focus in particular on the special case of constant-dimension codes.
We want to find the largest number of codewords for given parameters and therefore, we
discuss bounds on these values, such as the sphere-packing bound or Singleton bound.
Furthermore, the (non)existence of perfect codes will also be handled.

Strongly related with codes are designs. In the fourth chapter, we define covering de-
signs Cq(n, k, t), Steiner structures Sq(t, k, n) and Turán designs Tq(n, k, t) of which the
existence and bounds on their sizes are discussed. Since Steiner structures are optimal
covering designs, most of our attention is devoted to these. Hereby, we will also dis-
cuss the recent and important result from [5] about the existence of Steiner structures
S2(2, 3, 13) and related Steiner systems S(3, 8, 8192).

In the last chapter, (partial) spreads and (partial) spread codes are discussed in the
context of coding theory, design theory and projective geometry. For instance, a con-
struction of Beutelspacher of partial spreads in projective geometry leads to a useful
partial spread code Cq(k, n; p, p′), of which we discuss the construction and some prop-
erties, and a decoding algorithm for partial spread codes. We also consider another
example of a partial spread. Although it is still difficult to see if there would be applica-
tions of this partial spread from the decoding point of view, we could give a geometrical
description of the corresponding set of holes, found by a computer search made by Peter
Vandendriessche.

But there are still bounds to improve, more q-analogues to be made and possibly even
other constructions of partial spreads or new Steiner structures to be found. . . I hope
that maybe the reader of this work will be given a taste for this fascinating subject and
be encouraged to read more about it and to do research on this topic.

By making this english dissertation available for the COST Action, I hope I can hereby
make a contribution to the further development of random network coding and designs
over Fq.
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Chapter 1

Preliminaries

In this first chapter, we want to introduce some definitions, properties, examples . . .
and define all basic concepts needed in the chapters that follow. Since in this thesis we
want to make a link between classical coding theory and random network coding, we
start in the first section with some important basic information, based on [22] and [30].
Since there is a close relation with coding theory, we also consider designs, for which we
used [39]. Furthermore, there is a small section about graph theory, in order to define
two important distance-regular graphs, i.e. the Hamming graph and the Johnson graph.
Therefore, we made use of [40] for the basic concepts and [6] for the more advanced
information. To conclude this chapter, we introduce the notion of a q-analogue and
relate this to the Erdős-Ko-Rado problems. This section, based on [12] and [40], points
the way to the subsequent chapters, since we will see that a lot of concepts for random
network coding are in fact q-analogues of concepts in classical coding theory, design
theory, etc.

1.1 Coding theory

1.1.1 Error-correcting codes and the Hamming distance

When messages are transmitted through a noisy communication channel, e.g. a telephone
line or a satellite communication link, some errors may occur. The data received can be
different from what is sent, due to for example human error, imperfections in equipment
etc. If there has been a mistake in the transmission, some codes can detect this. Or
even better, some codes can correct these errors, the so called error-correcting codes.
The task of an error-correcting code is to encode the data, by adding a certain amount
of redundancy to the message, so that the original message can be recovered if (not too
many) errors have occurred.

Definition 1.1.1. A q-ary code C is a given set of sequences of symbols from a set
Fq = {λ1, . . . , λq} of q distinct elements. The set Fq is called the alphabet and usually,
we choose Fq = {0, . . . , q − 1}. If q is a prime power, we take the finite field Fq as
alphabet. The elements of C are called the codewords.
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Definition 1.1.2. If a q-ary code C is a subset of (Fq)
n, i.e. a code C of which each

codeword has the same number n of symbols, we say that C is a block code of length
n over Fq.

In this introduction, we shall restrict our attention to block codes. So by ‘code’ we shall
always mean ‘block code’.

Since for error-correcting codes it is important to know ‘how far’ a received vector is
from a transmitted vector or which codeword is ‘the closest’ to a received vector, we
need a notion of ‘distance’. We make this concept precise by the distance function
d : (Fq)

n × (Fq)
n → Z+, with Z+ the set of nonnegative integers.

Definition 1.1.3. The Hamming distance between two vectors x and y of (Fq)
n,

denoted by d(x, y), is the number of places in which they differ.

The Hamming distance is a metric because for all x, y, z ∈ (Fq)
n it satisfies the three

conditions (see e.g. [22]):

(i) d(x, y) > 0 and equality holds if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) 6 d(x, z) + d(z, y).

Definition 1.1.4. The space of all q-ary vectors of a given length n and of which the
distance between these vectors is measured by the Hamming distance, is called the
Hamming space H(n, q). The size of this space is qn.

Definition 1.1.5. The minimum distance of a code C, denoted by d(C), is the
smallest of the distances between distinct codewords, i.e.

d(C) = min{d(x, y)|x, y ∈ C, x 6= y}.

Definition 1.1.6. An (n,M,d)-code is a code of length n, containing M codewords
and having minimum distance d(C) = d. The set af all q-ary codes with length n and
minimum distance d is denoted as Cq(n,d).

The minimum distance of a code C gives a measure of how good this code is at er-
ror detection or error correction. The following theorem shows the importance of this
concept.

Theorem 1.1.7. Let C be an (n,M, d)-code.

(i) If d = s + 1, then C can detect up to s errors in a codeword and we call C an
s-detecting code.

(ii) If d = 2t+ 1 or d = 2t+ 2, then C can correct up to t errors in a codeword and we
call C a t-correcting code.

Definition 1.1.8. A minimum-distance decoder for a code C is one that takes the
output vector x and returns a nearest codeword y ∈ C, i.e. a codeword y ∈ C satisfying,
∀y′ ∈ C, d(x, y) 6 d(x, y′).
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It follows from Theorem 1.1.7, that if for a code C with d(C) = d and the number of
errors is

t 6

⌊
d− 1

2

⌋
,

then the minimum-distance decoder will always return the original transmitted code-
word.

A good (n,M, d)-code is a code with small n, for fast transmission of codewords, large
M , for a transmission of a wide variety of messages, and large d, to correct many errors.
Maximizing M and d are conflicting aims and a compromise has to be found. The so
called main coding theory problem is to optimize one of the parameter n,M, d for
given values of the other two. Usually, the problem is to find the largest code of given n
and d.

Definition 1.1.9. The largest value of M such that there exists a q-ary (n,M, d)-code
is denoted by Aq(n,d), so

Aq(n, d) = max
C∈Cq(n,d)

|C|.

A way of handling the main coding theory problem is to find bounds for Aq(n, d) for
specific values of n, d, q. This is a very important research area in coding theory, see for
instance Appendix A of [30] for tables of the best codes known.

Next to the length, we define another parameter for a codeword.

Definition 1.1.10. Let x ∈ (Fq)
n, with Fq = {0, λ1, . . . , λq−1}, the weight of x, denoted

by w(x), is the number of nonzero entries of the vector x. The minimum weight w(C)
of a code is the smallest of the weights of the nonzero codewords of C.

From now on, we assume that the alphabet Fq is the finite field Fq, where q is a prime
power, and we see Fnq as the vector space V (n, q).

There is a nice link between the Hamming distance of two codewords x, y ∈ Fnq and the
weight of their difference, since the vector x − y has nonzero entries in precisely those
places where x and y differ.

Theorem 1.1.11. Let x, y ∈ Fnq , then d(x, y) = w(x− y).

Definition 1.1.12. The subspace of the Hamming space of all binary vectors of a given
length n with a fixed weight w is called the Johnson space and denoted by J (n,w).
The size of this space is

(
n
w

)
.

Now, consider an important subset of Cq(n, d).

Definition 1.1.13. A q-ary (n,M, d)-code C such that every element has exactly w
nonzero entries, is a constant-weight code with weight w and we say that C is an
(n,M,d,w)-code . Such a code is an element of the set Cq(n,d,w), the set of all
codes in Cq(n, d) such that the weight of every codeword is w.

Definition 1.1.14. The largest value of M such that there exists a constant-weight
(n,M, d)-code C with weight w is denoted by Aq(n,d,w), so

Aq(n, d, w) = max
C∈Cq(n,d,w)

|C|.
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Most of the time constant-weight codes will be studied for q = 2, i.e. codes for which
every element is a vector of the Johnson space J (n,w), for some weight w, and sometimes
in literature, they refer to constant-weight codes if they mean the binary constant-weight
codes.

Also for constant-weight codes, a lot of researchers are investigating Aq(n, d, w) for spe-
cific parameters (see e.g. [30]).

We will finish this first subsection with another relation between the Hamming distance
and the weight in the binary case. Therefore, we need the notion of the intersection of
two vectors.

Definition 1.1.15. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors of
length n over F2 = {0, 1}. Then the intersection x∩ y is the vector in Fn2 defined by

x ∩ y = (x1y1, x2y2, . . . , xnyn).

Theorem 1.1.16. Let x, y ∈ Fn2 , then

d(x, y) = w(x) + w(y)− 2w(x ∩ y).

For the case of binary codes, this theorem gives in fact a new definition of the Hamming
distance. The structure of this characterisation is very similar to that of the definition of
the Levenshtein distance (1.1.1) and the subspace distance (2.2.2) and shows a certain
connection between these metrics.

1.1.2 Linear codes and the Hamming codes

Definition 1.1.17. A linear code over Fq is a subspace of V (n, q). Thus a subset C
of V (n, q) is a linear code if and only if

(i) u+ v ∈ C, for all u, v ∈ C,

(ii) a · u ∈ C, for all u ∈ C and a ∈ Fq.

If C is a k-dimensional subspace of V (n, q), then the linear code C is called an [n,k]-
code . If we want to specify the minimum distance d of C, we write [n, k, d]-code.

One of the most useful properties of a linear code is that its minimum distance is equal to
the minimum of the weights of the nonzero codewords, stated in the following theorem.

Theorem 1.1.18. Let C be a linear code, then d(C) = w(C).

Definition 1.1.19. A (k × n)-matrix whose rows form a basis of a linear [n, k]-code
is called a generator matrix of the code. Note that a linear code is defined by its
generator matrix.

Definition 1.1.20. The standard form of a generator matrix G of the [n, k]-code C
is of the form [

Ik A
]
,

with Ik the identity matrix of order k and A a (k × (n− k))-matrix.
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One way to specify a linear code is by its generator matrix. Another important way of
defining a linear code is by a parity-check matrix. First we need some other concepts.

Note that the inner product u · v of the vectors u = (u1, . . . , un) and v = (v1, . . . , vn) is
the scalar u1v1 + u2v2 + . . .+ unvn, and if u · v = 0, u and v are called orthogonal .

Definition 1.1.21. Given a linear [n, k]-code C, the dual code of C, denoted by C⊥, is
defined to be the set of those vectors of V (n, q) which are orthogonal to every codeword
of C, i.e.

C⊥ := {v ∈ V (n, q)| v · u = 0, for all u ∈ C}.

Theorem 1.1.22. Suppose that C is an [n, k]-code of Fq, then the dual code C⊥ of C is
a linear [n, n− k]-code.

Definition 1.1.23. A parity-check matrix H for an [n, k]-code C is a generator matrix
of C⊥.

It follows that H is an ((n − k) × n)-matrix satisfying GHT = 0, with 0 an all-zero
matrix, and that

C = {x ∈ V (n, q)|xHT = 0}.

In this way, any linear code is completely specified by a parity-check matrix.

Definition 1.1.24. A parity-check matrix H is said to be in standard form if

H =
[
B Ik

]
.

The next fundamental theorem establishes the relationship between the minimum dis-
tance of a linear code and a linear independence property of the columns of a parity-check
matrix.

Theorem 1.1.25. Suppose that C is a linear [n, k]-code over Fq with parity-check matrix
H. Then the minimum distance of C is d if and only if any d − 1 columns of H are
linearly independent and there exist d linearly dependent columns.

An important family of linear codes which are single-error-correcting codes and easy to
encode and decode, are the Hamming codes . A Hamming code is most conveniently
defined by specifying its parity-check matrix.

Definition 1.1.26. Let r be a positive integer and let H be an (r × (2r − 1))-matrix
whose columns are the distinct nonzero vectors of V (r, 2). Then the code having H as its
parity-check matrix is called a binary Hamming code and is denoted by Ham (r,2).

Theorem 1.1.27. The binary Hamming code Ham(r, 2), r > 2, is a [2r − 1, 2r − 1− r, 3]-
code (and hence a single-error-correcting code).

The Hamming code Ham(r, 2) has length n = 2r − 1 and dimension k = n − r. This
number r is the number of check symbols in each codeword and is also known as the
redundancy of the code.
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Definition 1.1.28. The extended binary Hamming code Ĥam (r,2) is the code
obtained from Ham(r, 2) by adding an overall parity-check, i.e. if H is the parity-check

matrix for Ham(r, 2), the parity-check matrix Ĥ for the extended code is
0

H
...
0

1 · · · 1

 .
Theorem 1.1.29. The extended binary Hamming code Ĥam(r, 2), r > 2, is a linear
[2r, 2r − 1− r, 4]-code.

Now we want to extend the definition of a binary Hamming code to the definition of a
Hamming code over a finite field Fq. In order that C be a linear code with minimum
distance 3, by Theorem 1.1.25, we require that any two columns of a parity-check matrix
H are linearly independent. Therefore, the columns must be nonzero and no column can
be a scalar multiple of another column. To construct an [n, n − r, 3]-code over Fq, for
a fixed redundancy r and with n as large as possible, we need a set of nonzero vectors
of V (r, q) such that none is a scalar multiple of another. This is the same as taking
all different points of the (r − 1)-dimensional projective space PG(r − 1, q). From this
observation, we get the following definition.

Definition 1.1.30. Let r be a positive integer and let H be an (r × n)-matrix, with
n = qr−1

q−1 , whose columns are the n different points of the (r− 1)-dimensional projective

space PG(r− 1, q). Then the code having H as its parity-check matrix is called a q-ary
Hamming code and is denoted by Ham (r, q).

1.1.3 Bounds on codes in the Hamming space

In search of the values Aq(n, d) and Aq(n, d, w) for specific values for q, n, d, w, bounds
arise to restrict the intervals to which these values belong. In this subsection, we give
some important bounds, of which we will try to give an analogon for the case of random
network codes in Chapter 3.

1.1.3.1 Sphere-packing bound and sphere-covering bound

Theorem 1.1.7 can also be interpreted in a more visual way. Therefore, we introduce the
next definition of a sphere.

Definition 1.1.31. For any vector x ∈ Fnq and any integer r > 0, the sphere of radius
r and center x is the set

S(x, r) := {y ∈ Fnq |d(x, y) 6 r}.

Lemma 1.1.32. The number of vectors in a sphere S(x, r) of center x ∈ Fnq and radius
r, 0 6 r 6 n, is independent of x and equals

|S(x, r)| =
r∑
i=0

(
n

i

)
(q − 1)i.
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If C is a code with d(C) > 2t+1, then the spheres of radius t centered on the codewords of
C are pairwise disjoint, since if a vector y were in both S(x, t) and S(x′, t), for x, x′ ∈ C,
x 6= x′ (see Figure 1.1a), then by the triangle inequality we would have

d(x, x′) 6 d(x, y) + d(x′, y) 6 t+ t = 2t,

a contradiction to d(C) > 2t + 1. So if we send a codeword x and we make at most t
errors, then the received vector y belongs to the sphere S(x, t) and the minimum-distance
decoder returns x. This is shown in Figure 1.1b.

(a) (b)

Figure 1.1: Visualisation of Theorem 1.1.7

This way of viewing gives us an upper bound on the numbers of codewords for an
(n,M, d)-code and is therefore called the sphere-packing bound.

Theorem 1.1.33 (Sphere-packing bound or Hamming bound). A q-ary (n,M, d)-code
with d = 2t+ 1 or d = 2t+ 2 satisfies

M

[
t∑
i=0

(
n

i

)
(q − 1)i

]
6 qn

or, in other words,

Aq(n, d) 6
qn∑t

i=0

(
n
i

)
(q − 1)i

.

Definition 1.1.34. A code which achieves the sphere-packing bound is called a perfect
code.

The binary repetition codes of length n, n odd, are perfect (n, 2, n)-codes in the Hamming
space. In the binary Johnson space J (2n, n), n odd, two codewords x, y with for x a
one on n fixed positions and for y a zero on these n positions, form a perfect code. Such
codes, together with the codes which contain only one codeword or which contain all
vectors of Fnq , are called the trivial perfect codes . The problem of finding all perfect
codes has been a big challenge, and is still a challenge, in coding theory.

Examples of perfect codes are all q-ary Hamming codes.
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The sphere-packing bound gives an upper bound on Aq(n, d). With the next theorem,
again by using spheres to prove it, we give a lower bound on the maximum number M
for an (n,M, d)-code.

Theorem 1.1.35 (Sphere-covering bound). For an integer q > 2 and integers n, d such
that 1 6 d 6 n, we have

Aq(n, d) >
qn∑d−1

i=0

(
n
i

)
(q − 1)i

.

Remark 1.1.36. In the literature, the previous bound is also well known as (the weaker
version of) the Gilbert-Varshamov bound .

1.1.3.2 Singleton bound

Another bound on the maximum number of codewords for an (n,M, d)-code is the bound
of Singleton. The technique to prove this theorem is by puncturing the code d − 1
times, i.e. by deleting the last d − 1 coordinates, and observing that the original code
has as much codewords as the obtained punctured code and hence, cannot have more
codewords than vectors in Fn−d+1

q .

Theorem 1.1.37 (Singleton bound). For any integers q > 2, 1 6 d 6 n, we have

Aq(n, d) 6 qn−d+1.

1.1.3.3 Johnson bounds

For the Johnson bounds, we restrict to the case of binary codes with weight w. This
means that we give bounds for A2(n, d, w), based on Chapter 17 of [30].

Theorem 1.1.38.
A2(n, d, w) 6

⌊n
w
A2(n− 1, d, w − 1)

⌋
Proof. Let C be a code with |C| = A2(n, d, w). Consider the codewords of C which have
a 1 in the ith position. If this coordinate is deleted, we obtain a new code with length
n − 1, distance larger than or equal to d and constant weight w − 1. Therefore the
number of such codewords is less than or equal to A2(n− 1, d, w − 1). Since we can do
this observation for every position, the total number of 1’s in the original code satisfies

w|C| = wA2(n, d, w) 6 nA2(n− 1, d, w − 1).

Since A2(n, d, w) is an integer, the theorem follows.

Iterating this theorem gives us the following corollary.

Corollary 1.1.39.

A2(n, 2δ, w) 6

⌊
n

w

⌊
n− 1

w − 1
· · ·
⌊
n− w + δ

δ

⌋
· · ·
⌋⌋

.
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Proof. First observe that A2(n − w + δ, 2δ, δ) =
⌊
n−w+δ

δ

⌋
. This follows from the fact

that codewords must have disjoint sets of 1’s. Applying Theorem 1.1.38 iteratively w−δ
times yields the bound of this corollary.

Theorem 1.1.40.

A2(n, d, w) 6

⌊
n

n− w
A2(n− 1, d, w)

⌋
Proof. If we take the complement of an (n,M, d, w)-code, i.e. swithing the ones and
zeros in the entries of the codewords, we obtain a code with the same length n, the
same number of codewords M and the same distance distribution, but the weight will
be n−w. Therefore, A2(n, d, w) = A2(n, d, n−w). It follows from Theorem 1.1.38 that

A2(n, d, n− w) 6

⌊
n

n− w
A2(n− 1, d, n− w − 1)

⌋
.

But again, because of the observation about switching the ones and zeros, we have

A2(n− 1, d, n− w − 1) = A2(n− 1, d, w),

which proves the theorem.

1.1.4 Insertion-and-deletion correcting codes and the Leven-
shtein distance

In this subsection we introduce insertion-and-deletion correcting codes, based on [25].
These are codes where we can correct a certain combination of deletions of original
symbols and insertions of new symbols in the codeword. We will also introduce a related
distance function and give an analogon of Theorem 1.1.7.

Definition 1.1.41. (i) A code is e-deletion/insertion correcting if it is a code
with the possibility to correct every combination of maximum e insertions and
deletions.

(ii) An d-deletion i-insertion correcting code is a code which corrects every com-
bination of at most d deletions and at most i insertions.

So, if a codeword c from an e-deletion/insertion correcting code is transmitted over some
communication channel and if the received word r is obtained from c by a sequence of
at most e deletions and insertions , then it is possible (at least in theory) to retrieve the
original word c from r.

For the d-deletion i-insertion correcting code, the d and i are fixed and then if a codeword
c is transmitted, we know that the received word r is obtained from c by a sequence of
at most d deletions and at most i insertions, and so we can find the transmitted word c
from r.

Notice that an e-deletion/insertion-correcting code is also a d-deletion i-insertion cor-
recting code, ∀d, i such that d+ i 6 e. The reverse does not always hold, as you can see
in the next example.
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Example 1.1.42. Let F1 = {0} and C = {0, 00000}. This code is not 2-deletion/inser-
tion correcting, since the received word y = 000 could be a transformed word from the
transmitted codeword c1 = 0 by inserting two zeros or from the codeword c2 = 00000 by
deletion of two zeros. On the other hand, the code C is d-deletion i-insertion correcting
if d + i 6 2. For instance if (d, i) = (0, 2) and we receive the word y = 000, then we
know that the transmitted codeword is c2 = 00000.

Definition 1.1.43. Let (Fq)
∗ be the set of all words over Fq. Let x = x1x2 . . . xn be a

codeword over Fq of length n. A subsequence of x is a word in (Fq)
∗

w = xi1xi2 . . . xi|w| , 1 6 i1 < i2 < . . . < i|w| 6 n.

A word w ∈ (Fq)
∗ is a common subsequence of the codewords x, y ∈ (Fq)

∗ if w is a
subsequence of both x and y. Note that x, y and w do not have to be of the same length.
The length of the largest common subsequence of two words x and y in (Fq)

∗ is
denoted as ρ(x, y), i.e.

ρ(x, y) := max{|w||w is a common subsequence of x and y}.

We will use this value ρ to define the distance for insertion-and-deletion correcting codes.

Definition 1.1.44. (i) The Levenshtein distance δ(x, y) between two words x, y
in (Fq)

∗ is defined by

δ(x, y) := |x|+ |y| − 2ρ(x, y). (1.1.1)

(ii) The modified Levenshtein distance δ∗(x, y) between two words x, y ∈ (Fq)
∗

is defined by

δ∗(x, y) := ||x| − |y||+ δ(x, y). (1.1.2)

We can also write the modified Levenshtein distance as

δ∗(x, y) := 2 max(|x| − ρ(x, y), |y| − ρ(x, y)).

This follows from the fact that, assuming that |x| > |y|,

δ∗(x, y) = |x| − |y|+ |x|+ |y| − 2ρ(x, y)

= 2(|x| − ρ(x, y))

> 2(|y| − ρ(x, y)).

The case |x| 6 |y| can be shown analogously.

It can be easily shown (see e.g. [25]) that δ and δ∗ are both metrics. These metrics will
be used to define the minimum distances for the codes.

Definition 1.1.45. (i) The minimum Levenshtein distance δ(C) of a code C is
defined by

δ(C) := min
x,x′∈C;x6=x′

δ(x, x′).
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(ii) The minimum modified Levenshtein distance δ∗(C) of C is defined by

δ∗(C) := min
x,x′∈C;x 6=x′

δ∗(x, x′).

From the definitions it follows that δ(C) 6 δ∗(C).

In [25] the two following theorems are shown.

Theorem 1.1.46. A code C ⊆ (Fq)
∗ is e-deletion/insertion correcting if and only if

2e < δ(C).

Theorem 1.1.47. A code C ⊆ (Fq)
∗ is d-deletion i-insertion correcting if and only if

2(d+ i) < δ∗(C).

From the definitions of δ and δ∗ it follows that δ(x, y) = δ∗(x, y) if x and y have the
same length. This involves the next corollary.

Corollary 1.1.48. A code C ⊆ (Fq)
n, in which each codeword has the same length n,

is d-deletion i-insertion correcting if and only if the code is (d + i)-deletion/insertion
correcting.

1.2 Designs

Definition 1.2.1. A t-(n,k, λ) design , with t, n, k, λ ∈ N, with1 n > k > 1, k > t > 1,
λ > 0, is an ordered triple D = (P,B, I), where P , called the set of points , and B, called
the set of blocks , are finite sets and I an incidence relation such that

(i) |P | = n and each element L ∈ B is incident with exactly k elements of P ,

(ii) each t different elements of P are incident with exactly λ common elements of B.

In other words, a t-(n, k, λ) design is a set X of n points and a collection of distinct
k-subsets of X, i.e. subsets of X with k elements, called blocks, with the property that
any t-subset of X is contained in exactly λ common blocks.

Example 1.2.2. Consider the m-dimensional projective space PG(d, q), d > 2, over the
finite field Fq. Let P be the set of points of PG(d, q), B the set of the lines of PG(d, q)

and I the natural incidence relation. Then |P | = qd+1−1
q−1 , the number of points incident

with a block is q + 1, and 2 different points define exactly one block. Consequently

D = (P,B, I) is a 2-( q
d+1−1
q−1 , q + 1, 1) design.

This example is a special case of a t-(n, k, λ) design with λ = 1, called a Steiner system.

1These conditions are only to exclude trivial cases.
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Definition 1.2.3. A t-(n, k, 1) design is a Steiner system S(t, k,n).

Or in other words, a Steiner system S(t, k, n) is a collection S of k-subsets, called blocks,
of an n-set such that every t-subset of the n-set is contained in exactly one block of S.
Note that for a Steiner system we will use the notation (X,S) or S if we do not need to
specify the n-set X or if this ambient set X is clear from the context.

Definition 1.2.4. A t-(n,k, λ) covering design is a pair (X,S), with X a set of n
elements, called points, and S a set of k-subsets ofX, called blocks, such that every subset
of t points is contained in at least λ blocks of S. The covering number Cλ(n,k, t) is
the minimum number of blocks in a t-(n, k, λ) covering design.

The difference between a t-(n, k, λ) covering design and a t-(n, k, λ) design is manifested
in the definitions in the important words ‘at least’ and ‘exactly’.

Also for the case of t-(n, k, λ) covering designs, we consider the case where λ = 1.

Definition 1.2.5. We will define a t-(n, k, 1) covering design by an (n,k, t)-covering
design . The minimum size of an (n, k, t)-covering design is the covering number
C(n,k, t) = C1(n, k, t). This covering design is a collection S of k-subsets of an n-set
X such that every t-subset of elements of X is contained in at least one element of S.

If a Steiner system S(t, k, n) exists, it is the smallest (n, k, t)-covering design. A relation
between these concepts is shown in the next theorem, which is also a lower bound on
C(n, k, t).

Theorem 1.2.6. Let (X,S) be an (n, k, t)-covering design. Then

|S| >

(
n

t

)
(
k

t

) ,
with equality if and only if S is a Steiner system S(t, k, n).

Proof. Every element of S is a k-subset of the ambient n-set X, and therefore contains
exactly

(
k
t

)
distinct t-subsets. Since the total number of t-subsets in X is

(
n
t

)
, we need

at least
(nt)
(kt)

elements in S to cover all these t-subsets, so |S| > (nt)
(kt)

. If |S| satisfies this

bound with equality, each t-subset has to be contained in exactly one element of S.
This means that (X,S) is a Steiner system S(t, k, n). And if (X,S) is a Steiner system

S(t, k, n), then the number of blocks of S is exactly
(nt)
(kt)

.

Now we also present another lower bound for t-(n, k, λ) covering designs.

Theorem 1.2.7 (Schönheim bound).

Cλ(n, k, t) >
⌈n
k
· Cλ(n− 1, k − 1, t− 1)

⌉
.
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Proof. Consider (X,S), an optimal t-(n, k, λ) covering design with |S| = Cλ(n, k, t).
Since |X| = n and since each block of S contains k elements, the average number of

elements of S in which a fixed element of X is contained, is |S|k
n

. So there has to be an

element x ∈ X that is contained in at most |S|k
n

elements of S. Now define

X ′ := X\{x}

and
S ′ := {S\{x}|S ∈ S, x ∈ S}.

This construction implies that

|S ′| 6 k

n
· |S| = k

n
· Cλ(n, k, t).

To prove the theorem, it remains to be shown that (X ′,S ′) is a (t− 1)-(n− 1, k − 1, λ)
covering design, since, from the fact that Cλ(n, k, t) is an integer, it follows that⌈n

k
· Cλ(n− 1, k − 1, t− 1)

⌉
6
⌈n
k
· |S ′|

⌉
6 Cλ(n, k, t).

First, the definitions of X ′ and S ′ imply that |X ′| = n− 1 and |S| = k− 1 for all S ∈ S ′.
Let A be an arbitrary subset of t−1 elements of X ′. Therefore, the set A∪{x} is a subset
of size t of X and hence, there exist at least λ blocks of S, say S1, . . . , Sλ, containing
A ∪ {x}. These blocks Si are also blocks of S ′, since they all contain x. Consequently,
S1\{x}, . . . , Sλ\{x} are blocks of S ′ and do contain A. This means that A is contained
in at least λ blocks of S ′ and so, (X ′,S ′) is a (t− 1)-(n− 1, k− 1, λ) covering design.

For the special case of (n, k, t)-covering designs, this bound is

C(n, k, t) >
⌈n
k
· C(n− 1, k − 1, t− 1)

⌉
.

We will give an analogous bound for the case of q-covering designs in Theorem 4.4.14,
with an analogous proof, and also the following corollary will be considered (see Corollary
4.4.15).

Corollary 1.2.8.

C(n, k, t) >

⌈
n

k

⌈
n− 1

k − 1

⌈
· · ·
⌈
n− t+ 1

k − t+ 1

⌉
· · ·
⌉⌉⌉

.

Proof. Applying Theorem 1.2.7 iteratively t− 1 times for λ = 1 gives us

C(n, k, t) >

⌈
n

k

⌈
n− 1

k − 1

⌈
· · ·
⌈
n− t+ 2

k − t+ 2
C(n− t+ 1, k − t+ 1, 1)

⌉
· · ·
⌉⌉⌉

.

Observing that C(n− t+ 1, k − t+ 1, 1) =
⌈
n−t+1
k−t+1

⌉
, proves the corollary.

We also mention the dual notion of an (n, k, t)-covering design.
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Definition 1.2.9. An (n,k, t)-Turán design is a pair (X,S), with X a set of n
elements and S a set of t-subsets of X, called blocks, such that every subset S of k ele-
ments contains at least one block of S. The Turán number T (n,k, t) is the minimum
number of blocks in an (n, k, t)-Turán design.

The duality between these concepts is stated in the following theorem, shown in [39].

Theorem 1.2.10. By taking the complement of each block of an (n, k, t)-Turán design,
we obtain an (n, n− t, n− k)-covering design and vice versa. It also follows that

T (n, k, t) = C(n, n− t, n− k).

To end this section, we want to show that it is natural that in this dissertation we have
attention for both codes and designs. We can construct certain codes from designs, e.g. a
binary constant-weight code can be constructed from a Steiner system.

Example 1.2.11. Let S be a Steiner system S(t, k, n). Now we construct a code of which
the codewords correspond in the following way to the k-sets of S. If X = {x1, x2, . . . , xn}
is the set of n points of this special design and K a k-subset of X, then the corresponding
codeword is a vector of length n where the ith position is 1 if xi ∈ K and 0 if xi /∈ K.
Since |K| = k, the weight of every vector is k. Since every t-subset of X is contained
in exactly one element of S, the intersection y ∩ z of two codewords y, z corresponding
to two distinct blocks K1, K2, cannot have a weight larger than or equal to t. Indeed,
otherwise the nonzero entries give rise to t elements which are contained in 2 blocks of
the Steiner system. Therefore, w(y ∩ z) 6 t− 1 and, by Theorem 1.1.16,

d(y, z) = w(y) + w(z)− 2w(y ∩ z) > 2(k − t+ 1).

Now, if we can find two blocks with an intersection of size t− 1, it follows that the code
obtained from the Steiner system S(t, k, n) has minimum distance 2(k− t+ 1). For this
purpose, fix a (t−1)-subset A, then there are still n− t+ 1 elements of X left. If we add
an arbitrary point of X\A to the fixed set A, this gives a well defined t-subset T . This
T is contained in exactly one block K. But if we construct all such t-sets in this way
and consider the corresponding blocks of S in which the t-sets are contained, then every
block K is counted k − t + 1 times. Therefore, through a fixed (t − 1)-subset there are
n−t+1
k−t+1

> 2 different blocks and so, there are at least two corresponding codewords with a
minimum distance 2(k−t+1). Consequently, if you consider codewords which correspond
to elements of a Steiner system S(t, k, n) as explained above, this is an (n,M, d, k)-code

with M =
(nt)
(kt)

and d = 2(k − t+ 1).

1.3 Graph theory

In this section, we consider some basic notions of graph theory. The goal here is to
introduce the Hamming graph and the Johnson graph. We do this by defining the
notion of association schemes.
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1.3.1 Some basic concepts

Definition 1.3.1. A graph G = (V,E) consists of a finite set V of vertices or nodes
together with a set E of edges , which are pairs of two vertices. Two vertices joined by
an edge are called adjacent .

Definition 1.3.2. An undirected graph G is a graph in which edges have no orien-
tation. Opposite to this, a directed graph G = (V,E) is a graph where E is a set of
ordered pairs of vertices, and so, the edge (x, y) starts in x and has y as end vertex.
If for a graph G = (V,E) multiple edges between two vertices are allowed, we call this
graph a multigraph . A loop is an edge which starts and ends in the same vertex. If
a graph G is undirected, has no loops and has no more than one edge between any two
different vertices, this graph is called a simple graph .

Definition 1.3.3. A complete graph is a graph of which each pair of vertices is joined
by an edge.

In the following figure we give an example of a graph, typically visualised as a set of dots
for the vertices, joined by lines for the edges. The graph is called the Petersen graph.

Figure 1.2: Petersen graph

Definition 1.3.4. A path in a graph G is a sequence of edges which connect a sequence
of vertices. The graph distance d(x, y) between two vertices x and y of a finite graph
is the minimum length of the paths connecting them, i.e. the length of the shortest path
between two vertices of a graph, the so called graph geodesic. The longest shortest
path of a graph is the graph diameter d, so d := maxu,v∈G d(u, v).

Definition 1.3.5. In an undirected graph G, two vertices are called connected if G
contains a path from one to the other, otherwise they are called disconnected. A graph
is called connected if every pair of distinct vertices in the graph is connected, otherwise
it is called disconnected.

Definition 1.3.6. The min-cut of a graph is the minimum number of edge deletions
in the graph that would cause a partition of the vertices of a graph into two disjoint
subsets which are not connected.

15



1.3.2 Association schemes and related graphs

Definition 1.3.7. A d-class association scheme on a finite set Ω is a pair (Ω,R)
with R a set of symmetric relations {R0,R1, . . . ,Rd} such that the following axioms
hold:

(i) R0 = {(x, x)|x ∈ Ω} and is called the identity relation,

(ii) R is a partition of Ω2,

(iii) there are intersection numbers pkij such that for each (x, y) ∈ Rk, the number
of elements z in Ω for which (x, z) ∈ Ri and (z, y) ∈ Rj equals pkij. This constant
pkij number only depends on i, j and k and not on the particular choice of x and y.

All the relations Ri are symmetric regular relations with valency p0ii.

If (x, y) ∈ Ri, we call the two elements x and y ith associates. So each element of Ω
is its own zeroth associate while distinct elements are never zeroth associates. If x and
y are kth associates, then the number of elements z which are both ith associates of x
and jth associates of y, is a constant pkij.

Definition 1.3.8. (i) The Johnson scheme, denoted by J(n, k), is defined as fol-
lows. Let Ω be a set with n elements. The elements of the scheme J(n, k) are the(
n
k

)
subsets of Ω with k elements. Two k-subsets X and Y are ith associates when

their intersection has size k − i.

(ii) The Hamming scheme, denoted by H(n, q), is defined as follows. The points of
H(n, q) are het qn ordered n-tuples over a set of size q. Two n-tuples x and y are
said to be ith associates if they disagree in exactly i coordinates.

We can interpret an association scheme as a complete graph with labelled edges. The
vertices of the graph are the elements of Ω. The edge joining vertices x and y is labelled
by i if (x, y) ∈ Ri, so if x and y are ith associates. The loops of the graph are the edges
labelled 0 at each vertex x, corresponding to R0. The interpretation of the intersection
numbers is as follows. The number of triangles with a fixed base labelled k and having
the other edges labelled i and j, is the constant number pkij. Again, this constant does
only depend on i, j, k and not on the choice of the base with label k. So for any vertices
x and y of the graph and any integers i, j = 0, 1, . . . , d (where d is the graph diameter),
the number of vertices at distance i from x and distance j from y depends only on i, j
and the graph distance k between x and y, independent of the choice of x and y.

Furthermore each vertex is adjacent with exactly vi := p0ii edges labelled i.

A distance-regular graph is an example of a graph that constitutes an association schemes.
Let G be a connected graph with diameter d on a set of vertices Ω. For every i in {0, . . . d}
we let Gi denote the graph on the same set Ω, with two vertices adjacent if and only if
they are at distance i in G, and we write Ri for the corresponding symmetric relation
on Ω. The graph G is said to be distance-regular if the set of relations {R0,R1, . . . ,Rd}
induces an association scheme on Ω. In [6] it is shown that this is equivalent to the next
definition.
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Definition 1.3.9. A distance-regular graph G is a connected graph for which there
exist integers bi, ci, i = 0, . . . , d (where d is the graph diameter) such that for any vertices
x, y ∈ G and distance i = d(x, y) there are exactly ci adjacent vertices of y ∈ Gi−1(x)
and bi neighbours of y ∈ Gi+1(x), where Gi(x) denotes the set of vertices y ∈ G with
d(x, y) = i. Furthermore, the number of neighbours of y whose distance from x is i is
denoted by ai. The numbers ai, bi and ci are called the intersection numbers and if k is
the degree of any vertex, we have that ai + bi + ci = k.

Complete graphs and the Petersen graph are examples of distance-regular graphs.

The definitions of the two specific association schemes in Definition 1.3.8 give rise to the
following distance-regular graphs.

Definition 1.3.10. (i) The Johnson graph of the k-sets in Ω, with |Ω| = n, has
the collection of k-subsets of Ω as vertex set. Two vertices are adjacent whenever
their intersection has size k − 1. Because of the close relation with the Johnson
scheme, we also denote the related Johnson graph by J(n, k). In Theorem 9.1.2
in [6], it is shown that this graph has diameter d = min(k, n− k), has

(
n
k

)
vertices

and is distance-transitive with intersection numbers

bj = (k − j)(n− k − j) and cj = j2 (0 6 j 6 d).

(ii) Let Ω be a set of size q > 2. The Hamming graph with diameter n on Ω is the
graph with vertex set Ωn, whereby two vertices are adjacent when they differ in one
coordinate. The graph is denoted by H(n, q), in the literature, the notation Lq(n)
is sometimes used. The Hamming graph has qn vertices and is distance-regular
with parameters

bj = (d− j)(q − 1) and cj = j (0 6 j 6 n), (1.3.1)

as we can find in [6]. The Hamming graph H(n, q) is related to codes in the
Hamming space H(n, q), as the name suggests, by taking the codewords of given
length n as the vertices and where two codewords are adjacent if they differ in one
position.

1.4 q-analogues

Definition 1.4.1. A q-analogue , also called a q-extension or q-generalization, of a
theorem, an identity or an expression is a generalization involving a new parameter q
that returns the original theorem, identity or expression in the limit as q → 1.

The basis for the q-analogues of the nonnegative integers is the equality

lim
q→1

qn − 1

q − 1
= n.
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Definition 1.4.2. For a nonnegative integer n, the q-analogue of n, also known as
the q-bracket or q-number of n, is defined by

[n]q =
qn − 1

q − 1
= qn−1 + . . .+ q2 + q + 1.

With this definition of [n]q we can define the q-analogue of the factorial, known as the
q-factorial, by

[n]q! = [1]q · · · · [n− 1]q · [n]q

=
q − 1

q − 1
· q

2 − 1

q − 1
· · · q

n−1 − 1

q − 1
· q

n − 1

q − 1

= 1 · (q + 1) · · · (qn−2 + . . .+ q + 1) · (qn−1 + . . .+ q + 1).

From the q-factorials, one can move on to define the q-binomial coefficients, also known as
the q-ary Gaussian coefficients, Gaussian polynomials or Gaussian binomial coefficients.

Definition 1.4.3. The q-ary Gaussian coefficient is defined, for nonnegative integers
k and n with k 6 n, by[

n

k

]
q

:=
[n]q!

[n− k]q![k]q!

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)

=
k−1∏
i=0

qn−i − 1

qk−i − 1
,

where the empty product, obtained when k = 0, is defined by 1.

It is well known (see e.g. Lemma 9.3.2 in [6]) that the Gaussian coefficient
[
n
k

]
q

gives the

number of distinct k-dimensional subspaces of an n-dimensional vector space V over Fq,
since there are

∏k−1
i=0 (qn− qi) ordered k-tuples of linearly independent vectors in V , and∏k−1

i=0 (qk − qi) ordered bases of any k-dimensional subspace. Even more, the number of
subspaces of dimension k in an n-dimensional vector space V over Fq, through a fixed
subspace of dimension t is

[
n−t
k−t

]
q
.

Letting q approach 1, we obtain the binomial coefficient
(
n
k

)
or in other words, the number

of k-element subsets of an n-element set.

Thus, one can regard a finite vector space as a q-generalization of a set, and the subspaces
as the q-generalization of the subsets of the set. This interesting point of view has been
the basis for a lot of related research. We give an example of the Erdős–Ko–Rado theorem
and his q-analogue, mentioned in [12].

In 1961, Erdős, Ko and Rado published a theorem which gives a sharp upper bound
on the size of the largest sets of pairwise non-trivially intersecting k-subsets of an n-
set, the so-called Erdős-Ko-Rado sets ([16]). In the following theorem, we stated the
improvement of this theorem by Wilson in 1984 in [41].
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Theorem 1.4.4. Let 1 6 t 6 k be positive integers. If S is a family of subsets of size k
in a set Ω with |Ω| = n and n > (t+ 1)(k − t+ 1), such that the elements of S pairwise
intersect in at least t elements, then

|S| 6
(
n− t
k − t

)
.

If n > (t+ 1)(k − t+ 1) + 1, then equality holds if and only if S is the set of all subsets
of size k through a fixed t-subset of Ω.

Inspired by the results on Erdős-Ko-Rado sets, also the q-analogue results were intro-
duced. These are the sets of k-dimensional subspaces in V (n, q), the n-dimensional
vector space over the finite field Fq, 2k 6 n, pairwise intersecting non-trivially. After
hard work by researchers as Hsieh, Frankl and Wilson, the q-analogue of Theorem 1.4.4
was stated by Tanaka in [35].

Theorem 1.4.5. Let 1 6 t 6 k be positive integers. If S is a set of k-dimensional
subspaces in V (n, q), with n > 2k, pairwise intersecting in at least a t-dimensional
subspace, then

|S| 6
[
n− t
k − t

]
q

.

Furthermore, equality holds if and only if S is the set of all subspaces of dimension k,
containing a fixed t-dimensional subspace of V (n, q), or n = 2k and S is the set of all
subspaces of dimension k in a fixed (n− t)-dimensional subspace.

In these theorems, we can indeed see the analogy between the binomial coefficients and
the Gaussian coefficients, and the analogy between the subsets of a set and the subspaces
of a vector space over a finite field.

Also in coding theory we can give q-generalizations of certain theorems. One of the goals
of this dissertation is to give q-analogues of different concepts. For instance, in Chapter
2 we introduce the Grassmann graph, which is the q-analogue of the Johnson graph.
In Chapter 3 we give some bounds in the Hamming space which are the q-analogues of
bounds in Subsection 1.1.3, even some proofs are similar. Also designs and spreads will
be handled for this purpose.

19



Chapter 2

Coding for errors and erasures in
random network coding

2.1 Random network coding

2.1.1 General idea

Like many fundamental concepts, network coding is based on a simple basic idea which
was first stated in the paper [2] by R. Ahlswede et al., as noticed in [1].

Simply represented, a network is a directed multigraph which consists of different nodes.
As you can see in figure 2.1 ([37]), the source nodes transmit messages to the sink
nodes through a channel of inner nodes, also known as the intermediate network nodes.
The core notion of network coding is to allow and encourage mixing of data at these
intermediate network nodes. A receiver sees the data packets and deduces from them the
messages that were originally intended for the sinks. In contrast to traditional ways to
operate a network that tries to avoid collisions of data streams as much as possible, one
of the most interesting opportunities of this approach is just the use of random mixing
of data streams.

Figure 2.1: A network with source, inner and sink nodes
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The article of Kötter and Kschischang ([28]) has given the interest in random network
coding an enormous boost. This article is also the basis of this chapter.

The principle of network coding is easiest explained with an example (see e.g. [2]), called
the butterfly network. Some people say that every talk about random network coding
has to include the example of the butterfly network, so we will also follow this approach.

2.1.2 Butterfly network

In this example two sources have access to information a and b at a rate of one bit per
unit time. They have to communicate these to the two sink nodes, which each want to
know both a and b per unit time. The sources send a and b to the first intermediate
node. All links have a capacity of one bit per unit time, so each edge can carry only a
single value.

If only forwarding were allowed, then the central link would be only able to carry a or b,
but not both. If we would send a through the center, then the upper receiver R1 would
receive a twice and not know b at all. Suppose we send b to the center, it poses a similar
problem for the lower receiver R2. This situation is visualised in figure 2.2a ([37]).

By sending the sum of a and b through the center, a and b can be transmitted to both
destinations simultaneously, as shown in figure 2.2b. The upper sink node receives a and
a + b, and can calculate b by subtracting the two values. Similarly, the lower sink will
receive b and a+ b, and will also be able to determine both a and b.

(a) Only forwarding (b) Butterfly network

Figure 2.2

2.1.3 Random linear network coding

Random network coding uses the same idea as the butterfly network. When sending
information through a network, we can optimize the throughput by doing linear combi-
nations on the intermediate nodes. We call it linear network coding.

According to [28], the standard, widely advocated approach to random linear network
coding is as follows. The source(s) randomly choose(s) the parameters of all inner nodes
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beforehand and send(s) these as ‘headers’ of the information packets. These headers are
used to decode the codewords, which are rank-metric codes.

In contrast, in this thesis we consider a ‘noncoherent’ or ‘channel oblivious’ model, where
neither transmitter nor receiver is assumed to have knowledge of the channel transfer
characteristic. That means that the inner nodes transmit a random linear combination of
the incoming information, but the parameters are not known in general. So if the source
nodes send some vectors in the model, we receive in the sink nodes some vectors which
are linear combinations of the transmitted vectors. Because the model is ‘memoryless’,
we cannot deduce from the received information the original vectors. That is why here
the codewords will not be vectors, but vector spaces, conveyed via transmission of a
generating set for that space.

From [28] we know that the communication between transmitter and receiver occurs in a
series of rounds or ‘generations’. During each generation, the transmitter sends a number
of packets of a fixed length into the network. Each packet may be seen as a row vector of
length n over a finite field Fq. Through the network, these packets possibly pass through
a number of intermediate nodes. Whenever an intermediate node has an opportunity to
send a packet, it creates a random Fq-linear combination of the packets it received and
transmits this. Finally, the receiver collects such randomly generated packets and tries
to deduce the set of packets which the source has injected into the network.

2.1.4 Errors and erasures

Random network coding is a powerful tool for transmitting information in networks, yet
it is susceptible to errors and erasures.

Definition 2.1.1. Errors are erroneously received packets and erasures insufficiently
many received packets.

Packet transmission errors can be caused by noise or intentional jamming. In Subsection
2.1.5, it will be shown that, even a single error in one received packet can make the entire
transmission useless when the erroneous packet is combined with other received packets
to deduce the transmitted information. Another problem of deducing the transmitted
message can happen when insufficiently many packets from one generation reach the
receivers.

If we take the set of successful packet transmissions in a generation, this induces a di-
rected multigraph with the same vertex set as the network and where the edges denote
successful packet transmissions. The rate of information transmission (packets per gen-
eration) between the transmitter and the receiver is upper-bounded by the min-cut (see
Definition 1.3.5) between these nodes. Random network coding in Fq is able to achieve a
transmission rate that reaches the min-cut with probability approaching one as q →∞,
as shown in [24].

In the next sections, we formulate a coding theory that captures the effects of both errors
and erasures.
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2.1.5 Operator channel

We will now introduce a concise and convenient abstraction of the channel encountered
in random linear network coding, when neither transmitter nor receiver have knowledge
of the channel transfer characteristics.

We will formulate our problem for the case of a unicast, a communication between a
single transmitter and a single receiver. See [24] for a generalization to multicasting.

Let {x1, x2, . . . , xm}, xi ∈ Fnq , i = 1, . . . ,m, denote the set of the vectors transmitted by
the source. In the error-free case, the receiver collects packets yj, j = 1, . . . , l, where each
yj is formed as a linear combination of the vectors xi. So

yj =
m∑
i=1

hjixi

with unknown, randomly chosen coefficients hji ∈ Fq.

Normally the receiver would collect as many packets as possible, so note that a priori
the parameter l is not fixed. But there are properties, such as the min-cut between the
transmitter and the receiver, who may influence the coefficients hji. So at some point,
collecting further redundant information will give no benefit anymore.

Consider now the case where also t erroneous packets are injected. This model is enlarged
with error packets ek, k = 1, . . . , t, so each received packet can be seen as

yj =
m∑
i=1

hjixi +
t∑

k=1

gjkek

where again hji and gjk are unknown random coefficients in Fq.

Note that since these erroneous vectors may be injected anywhere within the network,
they have the potential to cause widespread error propagation. In particular, a single
error in one received packet can make the entire transmission useless. For example, if
gj1 6= 0, ∀j, even a single error packet e1 may corrupt each and every received packet.

The transmission model can be written in matrix form as

y = Hx+Ge

where H and G are random (l×m)- and (l× t)-matrices, respectively, x is the (m× n)-
matrix whose rows are the transmitted vectors, y is the (l × n)-matrix whose rows are
the received vectors, and e is the t× n matrix whose rows are the error vectors.

Since H is a random matrix, the question arises what property of the injected sequence
of packets remains invariant in the transmission model explained in this section, even
in the error-free case where e = 0. The only thing that is fixed by the product Hx,
when H is random, is the row space of x. Again, we see that we will not consider
the rows of x, i.e. the transmitted vectors xi, but the vector space spanned by these
vectors. This observation is very important for the channel models and transmission
strategies considered in this dissertation. With regard to the injected vector space,
the only deleterious effect that a multiplication with H may have is that Hx may have
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smaller rank than x. That can be attributed to an insufficient min-cut or packet erasures,
for example. Then Hx will generate a subspace of the row space of x, and the rank
corresponds to the dimension of the subspace.

Let W be an arbitrary fixed n-dimensional vector space over Fq. All transmitted and
received packets will be vectors of W . However, we will describe a transmission model
in terms of subspaces of W spanned by these packets. Let P(W) denote the set of all
subspaces of W , called the power set of W . Since W is isomorphic to Fnq , we can see
P(W) just as P(Fnq ). This is the reason why we call the set of all subspaces of W ,
including {0} andW itself, the projective space of dimension n−1 over Fq, associated
with W . In what follows, we will denote this by Pq(n).1 Furthermore, in the following
we assume that the dimensions are dimensions of vector spaces, unless stated otherwise,
and subspaces of dimension k will sometimes be briefly called k-subspaces.

We denote U + V = {u + v|u ∈ U, v ∈ V } as the sum of two subspaces U, V ∈ Pq(n).
If U ∩ V = {0}, then the sum U + V is a direct sum, denoted as U ⊕ V . It is clear
that dim(U ⊕V ) = dim(U) + dim(V ). Furthermore, for any subspaces U and V we have
V = (U ∩V )⊕V ′ for some subspace V ′ isomorphic to the quotient space V/(U ∩V ). So
we can always transform a sum into a direct sum as follows

U + V = U + ((U ∩ V )⊕ V ′) = U ⊕ V ′.

Definition 2.1.2. For an integer k > 0, we define a stochastic operator Hk, called an
erasure operator that operates on the subspaces of W as follows. If dim(V ) 6 k,
Hk(V ) = V . If dim(V ) > k, then Hk(V ) returns a randomly chosen k-dimensional
supspace of V .2

Let U and V be two subspaces ofW , it is always possible to realize U as U = Hk(V )⊕E
for some subspace E ofW , with k = dim(U ∩V ) and Hk(V ) = U ∩V . This is the key to
define the following ‘operator channel’ as a concise and convenient transmission model
for random network coding.

Definition 2.1.3. An operator channel C associated with the ambient space W is
a channel with input and output alphabet P(W). The channel input V and channel
output U can always be related as

U = Hk(V )⊕ E

with k = dim(U ∩ V ) and E an error space. In transforming V to U , we commit
ρ = dim (V )− k erasures and t = dim (E) errors.

Remark 2.1.4. We will note in Remark 2.2.11 that instead of the terminology ‘era-
sures’ and ‘errors’, it might be better to use the terminology ‘deletions’ and ‘insertions’
since there, we will be able to make a link between the metric defined in Subsection
2.2.1 and the Levenshtein metric for insertion-and-deletion correcting codes, discussed
in Subsection 1.1.4.

1We will use the notations of [17]. This paper also includes the following remark. Many relevant
papers, such as [28], refer to Pq(n) or P(W) as the projective geometry of W. The terms ‘projective
geometry’ and ‘projective space’ seem to be equally well-established in the literature. We feel that
‘projective space’ is more fortunate terminology, since Pq(n) is the ambient ‘space’ for the codes at
hand.

2For the purposes of this thesis, the distribution of Hk(V ) is unimportant.
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Remark 2.1.5. We have chosen to model the error space E so that it intersects trivially
with the transmitted subspace V , thus the choice of E is not independent of V . However,
we can do that without loss of generality. Indeed, if we would model the received space as
U = Hk(V )+E for an arbitrary error space E, then since E always decomposes for some
space E ′ as E = (E ∩ V )⊕E ′, we would get U = Hk(V ) + (E ∩ V )⊕E ′ = Hk′(V )⊕E ′
for some k′ > k. This means that the components of an error space E that intersects
with the transmitted space V would only be helpful, possibly decreasing the number of
erasures seen by the receiver.

2.2 Coding for operator channels

In summary, an operator channel takes in a vector space and puts out another vector
space, possibly with erasures, i.e. deletion of vectors from the transmitted space, or
errors, i.e. addition of vectors to the transmitted space.

In this section we will define a suitable metric, define some basic concepts, show how to
construct codes that correct combinations of errors and erasures . . . for this channel.

Recall that W is the fixed n-dimensional vector space over Fq and Pq(n) is the set of all
subspaces of W .

2.2.1 Metric

Definition 2.2.1. Let Z+ denote the set of nonnegative integers. We define the sub-
space distance d : Pq(n)× Pq(n)→ Z+ by

d(U, V ) := dim(U + V )− dim(U ∩ V ). (2.2.1)

The motivation of the choice of the metric follows from the insertions and deletions which
occur by the transmission of information by random network coding.

Because dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V ), we may also write

d(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) (2.2.2)

= 2 dim(U + V )− dim(U)− dim(V ).

To be able to talk about distances between codewords, this function d needs to be a
metric. This is indeed true, as is shown in the next lemma. We will call this metric the
subspace metric.

Lemma 2.2.2. The function d : Pq(n)× Pq(n)→ Z+ with

d(U, V ) := dim(U + V )− dim(U ∩ V ) = dim(U) + dim(V )− 2 dim(U ∩ V )

is a metric for the space Pq(n).
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Proof. Let U, V,X ∈ Pq(n). It is clear that the following two conditions are correct.

(i) d(U, V ) > 0 and equality holds if and only if U = V .

(ii) d(U, V ) = d(V, U)

So we just have to prove the triangle inequality,

(iii) d(U, V ) 6 d(U,X) + d(X, V ).

This inequality holds because we have

d(U, V )− d(U,X)− d(X, V )

= dim(U) + dim(V )− 2 dim(U ∩ V )− dim(U)− dim(X) + 2 dim(U ∩X)

− dim(X)− dim(V ) + 2 dim(X ∩ V )

= 2(dim(U ∩X) + dim(V ∩X)− dim(X)− dim(U ∩ V ))

= 2(dim((U ∩X) + (V ∩X))− dim(X)︸ ︷︷ ︸
60

+ dim(U ∩ V ∩X)− dim(U ∩ V )︸ ︷︷ ︸
60

) (2.2.3)

6 0.

The first inequality in (2.2.3) holds since (U ∩ X) + (V ∩ X) ⊆ X. Because of the
property U ∩ V ∩X ⊆ U ∩ V , we also get the second inequality in (2.2.3).

By checking the three conditions we have obtained that d is a metric.

Given a subspace U of W of dimension k, the orthogonal subspace of U in W is the
(n− k)-dimensional subspace

U⊥ = {v ∈ W|u · v = 0, ∀u ∈ U},

where u · v is the standard inproduct of u and v.

For any subspaces U and V in Pq(n), the well known properties (U⊥)⊥ = U , (U+V )⊥ =
U⊥ ∩ V ⊥ and (U ∩ V )⊥ = U⊥ + V ⊥ give a link between the distance between these
subspaces and the distance between their orthogonal subspaces for this metric. Namely,
the distances are perfectly mirrored, since it follows that

d(U⊥, V ⊥) = dim(U⊥ + V ⊥)− dim(U⊥ ∩ V ⊥)
= dim((U ∩ V )⊥)− dim((U + V )⊥)
= (n− dim(U ∩ V ))− (n− dim(U + V ))
= dim(U + V )− dim(U ∩ V )
= d(U, V ).

(2.2.4)
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2.2.2 Codes

Definition 2.2.3. A code for an operator channel with ambient spaceW is a nonempty
subset of Pq(n), i.e. a nonempty collection of subspaces of W .

With the subspace metric we can associate a notion of distance between codewords. An
important concept in this context is the next definition.

Definition 2.2.4. The minimum distance of C is defined by

d(C) := min
U,V ∈C:U 6=V

d(U, V ).

We often denote the minimum distance by d, if there is no possibility of ambiguity.

If we define the minimum distance d as above, denote the size of the code by M = |C|
and if d(U, V ) > d for all different subspaces U, V ∈ C and there exist codewords U
and V such that d(U, V ) = d, then we say that C is an (n,M,d)-code in projective
space.

Definition 2.2.5. The complementary code corresponding to a code C is the code
C⊥ = {U⊥|U ∈ C} obtained from the orthogonal subspaces of the codewords of C.

Because d(U⊥, V ⊥) = d(U, V ), as shown in (2.2.4), the minimum distance of the com-
plementary code C⊥ is d(C⊥) = d(C). If C is an (n,M, d)-code, then so is C⊥.

In the next subsection, we discuss an important group of codes, the constant-dimension
codes.

2.2.3 Constant-dimension codes

Definition 2.2.6. A constant-dimension code is a code of which each codeword has
the same dimension.

In the context of constant-dimension codes, it is natural to start with the following
definition.

Definition 2.2.7. Given a nonnegative integer k 6 n, the set of all subspaces ofW with
dimension k is known as the Grassmannian Gq(n, k).

If an (n,M, d)-code C is contained in Gq(n, k) for some k 6 n, it is a constant-dimension
code. In that case we say that C is an (n,M,d, k)-code. Since ∀U, V ∈ Gq(n, k) it
follows that dim(U) = dim(V ) = k and

d(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) = 2(k − dim(U ∩ V )),

so the distance between two codewords is always even and the minimum distance is at
least 2.
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Since C ⊆ Gq(n, k), it follows thatM 6 |Gq(n, k)|. To determine the size of the Grassman-
nian Gq(n, k), we make use of the q-analogue of the binomial coefficient. In Section 1.4
we defined the q-ary Gaussian coefficient, for nonnegative integers k and n with k 6 n,
by [

n

k

]
q

:=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)

=
k−1∏
i=0

qn−i − 1

qk−i − 1
,

where the empty product obtained when k = 0, is defined by 1.

Note that
[
n
k

]
q

=
[
n

n−k

]
q
. If it is clear that we work over Fq, the Gaussian coefficient is

sometimes denoted by
[
n
k

]
, so without the index q.

We also noted (see Section 1.4) that the Gaussian coefficient
[
n
k

]
q

gives the number of

distinct k-dimensional subspaces of an n-dimensional vector space over Fq. That is why
the size of the Grassmannian Gq(n, k) is

|Gq(n, k)| =
[
n

k

]
q

.

If C is an (n,M, d, k)-code, C⊥ is a constant-dimension code of type (n,M, d, n − k).
So if we consider constant-dimension codes, we may restrict ourselves to (n,M, d, k)-
codes with k 6 n

2
, since a code of type (n,M, d, k) with k > n

2
may be replaced by its

complementary code C⊥.

The (n,M, d, k)-codes are akin to constant-weight codes in the Hamming space. As
these constant-weight codes correspond to a distance-regular Johnson graph, so does
the metric space Gq(n, k) correspond to a distance-regular graph, called the Grassmann
graph.

Definition 2.2.8. The Grassmann graph Gq(n,k) is a graph of which the vertex set
is the set Gq(n, k) of all k-dimensional subspaces of Pq(n), and two vertices are adjacent
if the corresponding subspaces intersect in a subspace of dimension k− 1. So there is an
edge joining vertices U and V if and only if d(U, V ) = 2.

We also note that the distance between two subspaces U, V ∈ Gq(n, k) with the metric
introduced in Definition 2.2.1, is an even number equal to twice the graph distance in
the Grassmann graph.

In Theorem 9.3.3 in [6] it is shown that Gq(n, k) has diameter d = min(k, n − k) and
that Gq(n, k) is distance transitive with intersection numbers

bj = q2j+1

[
k − j

1

][
n− k − j

1

]
and cj =

[
j

1

]2
(0 6 j 6 d), (2.2.5)

so Gq(n, k) is a distance-regular graph and constitutes an association scheme with re-
lations given by the distance between spaces. The parameters in (2.2.5) are just the
q-analogues of the intersection numbers of the Johnson graph. Because of the q-analogy
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with the Johnson graph, the Grassmann graph is also called a q-Johnson graph. As such,
techniques for bounds in the Hamming association scheme can be applied. In particular,
sphere-packing and sphere-covering concepts have a natural equivalent formulation. We
explore this in the next chapter.

Remark 2.2.9. Although we can link the codes in projective space with familiar codes
in the Hamming space and codes contained in a Grassmannian with constant-weight
codes in the Johnson space, there are important differences. We have seen that the
Grassmannian Gq(n, k) corresponds to a distance-regular graph, similar to the distance-
regular graph resulting from the Johnson space. But on the other hand, while the
Hamming space Fnq is always distance-regular as a graph, the graph associated with
Pq(n) is not. We can define this graph as the graph with the elements of the projective
space Pq(n) as vertices and two vertices are adjacent if and only if for the corresponding
elements A,B ∈ Pq(n) d(A,B) = dim(A + B) − dim(A ∩ B) = 1. For instance, from a
projective view considered, the elements at distance 1 from a given point p in Pq(4) are
the empty set and the q2 + q + 1 lines through p. On the other hand, the elements at
distance 1 from a given line L in Pq(4) are the q + 1 points on L and the q + 1 planes
through L. So two spheres of the same radius in Pq(n) (see Definition 3.2.1) may have
different sizes. This implies that conventional geometric intuition does not always apply.

2.2.4 Error and erasure correction

To conclude this chapter, we will give an important theorem which shows that codes
in Pq(n) are precisely what is needed for error-correction in networks.

Recall that a minimum-distance decoder for a code C returns the nearest codeword for a
given output. If U is the output of an operator channel, the minimum-distance decoder
returns a codeword V ∈ C satisfying

d(U, V ) 6 d(U, V ′), ∀V ′ ∈ C.

The next theorem shows us the error and erasure correction capability of a code C under
minimum-distance decoding.

Theorem 2.2.10. Let C be a code for transmission over an operator channel, V ∈ C be
transmitted and

U = Hk(V )⊕ E

be received, where Hk is defined as in Definition 2.1.2 and dim(E) = t. Let us denote the
maximum number of erasures induced by the channel by ρ = max(0,max

U∈C
dim(U)− k). If

2(t+ ρ) < d(C), (2.2.6)

then a minimum-distance decoder for C will return the transmitted codeword V from the
received space U .

Proof. Let V ′ = Hk(V ). The triangle inequality gives us

d(V, U) 6 d(V, V ′) + d(V ′, U) 6 ρ+ t. (2.2.7)
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If T 6= V is any other codeword in C, then, again from the triangle inequality,

d(C) 6 d(V, T ) 6 d(V, U) + d(U, T ).

From this inequality it follows that

d(U, T ) > d(C)− d(V, U).

By combining (2.2.7) and (2.2.6), we get

d(U, T ) > d(C)− (ρ+ t) > ρ+ t > d(U, V ).

So a minimum-distance decoder must produce V , because V is the nearest codeword
for U .

Remark 2.2.11. As seen in the previous theorem, erasures and errors are equally costly
to the decoder. This is in apparent contrast with traditional error-correction. Then an
(n,M, d)-code can correct up to e errors and f erasures if 2e+ f < d, where an error is
an incorrect value in an unknown position and an erasure is a position without a value,
so a blank position. Indeed, if we receive a vector y with f blank positions which differs
in e + f positions from the transmitted codeword x and if x′ is a codeword that differs
e′ + f positions from y, with e′ 6 e, then d(x, x′) 6 e+ f + e′ 6 2e+ f < d. This shows
that in this context erasures cost less than errors. However, this is rather a difference
because of the terminology.

Perhaps more closely related classical concepts are ‘deletions’ and ‘insertions’, since in
our situation of an operator channel associated with the ambient space W , the erasures
are deletions of dimensions and errors are insertions of dimensions. In Subsection 1.1.4,
a code is called d-deletion i-insertion correcting if it is possible to correct every com-
bination of at most d deletions and at most i insertions. There is a clear similarity
between the Levenshtein distance for these codes ((1.1.1)) and the subspace distance for
error-correcting codes in projective space ((2.2.2)). In Theorem 1.1.47 and the previous
Theorem 2.2.10 you can see that also the capacity of correcting is similar, where the
dimension t of the error space corresponds to the i insertions and the ρ erasures to the
d deletions.

If we can be sure that the channel always returns at least the transmitted subspace, there
are no erasures. This can be expressed by choosing operator Hdim(W) which operates as
an identity on each subspace of W . This special case gives us the following corollary of
Theorem 2.2.10.

Corollary 2.2.12. Let C be a code for transmission over an operator channel, V ∈ C be
transmitted and

U = Hdim(W)(V )⊕ E = V ⊕ E

be received, where dim(E) = t. If
2t < d(C), (2.2.8)

then a minimum-distance decoder for C will produce V .
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In other words, in the absence of erasures, a minimum-distance decoder uniquely corrects
errors up to dimension

t 6

⌊
d(C)− 1

2

⌋
.

This is in parallel to the standard error-correction situation, see Theorem 1.1.7.

Symmetrically, we consider the case where the network produces no errors, this means
that the error space E = {0}. So we get the next corollary.

Corollary 2.2.13. Let C be a code for transmission over an operator channel, V ∈ C be
transmitted and

U = Hk(V )⊕ {0} = Hk(V )

be received. If
2ρ < d(C), (2.2.9)

where ρ = max(0,max
U∈C

dim(U)−k), then a minimum-distance decoder for C will produce

V .
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Chapter 3

Bounds on codes in random network
coding

The main coding theory problem is to construct ‘good’ codes, i.e. codes having a
small length n, a large minimum distance d and a large number of codewords M . As
in classical coding theory, we want to maximize the number of codewords for a given
dimension n of an ambient space W and minimum distance d.

Definition 3.0.14. The largest value of M such that there exists an (n,M, d)-code in
Pq(n) is denoted by Aq(n, d). The maximum number of codewords in an (n,M, d, k)-code
in Gq(n, k) is denoted by Aq(n, d, k).

In order to find Aq(n, d) and Aq(n, d, k) for specific q, n, d, k, we will discuss bounds on
these values, based on the articles [28] and [17]. First, we will discuss the bounds in the
special case of constant-dimension codes.

3.1 Bounds on constant-dimension codes

3.1.1 Sphere-packing bound and sphere-covering bound

As we remarked earlier, the Grassmann graph constitutes an association scheme, which
lets us use simple geometric arguments to give the standard sphere-packing upper bound
and sphere-covering lower bound. In order to establish these bounds we need the notion
of a sphere.

Definition 3.1.1. Let V ∈ Gq(n, k) be a subspace of the ambient n-dimensional vector
spaceW . The sphere S(V, k, r) of radius r centered at a space V in Gq(n, k) is defined
by

S(V, k, r) := {U ∈ Gq(n, k)|d(U, V ) 6 2r}.

Note that the radius is defined in terms of the graph distance in the Grassmann graph.
Since the distance between two elements in the Grassmannian Gq(n, k) is always even,
this definition gives no restrictions.
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Since Gq(n, k) constitutes a distance-regular graph, hence an association scheme, the
number of spaces in S(V, k, r) is independent of V . This follows from the fact that in the
Grassmann graph Gq(n, k) the number of elements at graph distance i 6 r, i.e.

∑r
i=0 p

0
ii,

is independent of the vertices. Therefore, if we don’t want to specify the center of the
sphere of radius r in Gq(n, k), we write S(n,k, r).

Lemma 3.1.2. The number of spaces in S(V, k, t) for V ∈ Gq(n, k) equals

|S(n, k, t)| =
t∑
i=0

qi
2

[
k

i

][
n− k
i

]
,

for t 6 k.

Proof. Since d(U, V ) = 2(k − dim(U ∩ V )), for some U, V ∈ Gq(n, k), we first give an
expression for the subspaces U that intersect V in a (k − i)-dimensional subspace, for
some i, 0 6 i 6 t. We can choose the (k − i)-dimensional subspace of intersection in[
k
k−i

]
=
[
k
i

]
ways. To complete the subspace we take i linearly independent vectors not

in V . The possibilities of doing this, divided by the number of different ways to choose i
linearly independent vectors for the same k-dimensional subspace that contains a fixed
(k − i)-dimensional subspace, equals

(qn − qk)(qn − qk+1) . . . (qn − qk+i−1)
(qk − qk−i)(qk − qk−i+1) . . . (qk − qk−1)

,

which we can rewrite as

qk(qn−k − 1)qk+1(qn−k−1 − 1) . . . qk+i−1(qn−k−i+1 − 1)

qk−i(qi − 1)qk−i+1(qi−1 − 1) . . . qk−1(q − 1)
=
(
qi
)i [n− k

i

]
= qi

2

[
n− k
i

]
.

So the cardinality of a shell of the subspaces at distance 2i around V is
[
k
i

]
qi

2[n−k
i

]
.

Summing the cardinality of the shells proves the theorem.

The expression enables us to see immediately that |S(n, k, t)| = |S(n, n − k, t)|, as
expected from (2.2.4).

The next theorem gives the q-analogue of the sphere-packing bound of constant-weight
codes.

Theorem 3.1.3 (Sphere-packing bound). Any (n,M, d, k)-code C in Gq(n, k) with d = 2δ
and t =

⌊
δ−1
2

⌋
, must satisfy

M

(
t∑
i=0

qi
2

[
k

i

][
n− k
i

])
6

[
n

k

]
,

or equivalently

Aq(n, 2δ, k) 6
|Gq(n, k)|
|S(n, k, t)|

=

[
n

k

]
t∑
i=0

qi
2

[
k

i

][
n− k
i

] .
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Proof. Let U be an element of Gq(n, k) in two different spheres S(V, k, t) and S(W,k, t)
with V,W ∈ C. Because of the triangle inequality, d(V,W ) 6 d(V, U) + d(U,W ) 6 4t <
2δ = d and we get a contradiction. So M spheres S(V, k, t) are mutually disjoint. So

|
⋃
V ∈C

S(V, k, t)| = M

(
t∑
i=0

qi
2

[
k

i

][
n− k
i

])
.

This union contains at most |Gq(n, k)| =
[
n
k

]
subspaces. This proves this theorem.

We can adapt Definition 1.1.34 for codes in Gq(n, k).

Definition 3.1.4. A constant-dimension code which achieves the sphere-packing bound
is called a perfect code.

Equivalently, we can say that an (n,M, 2δ, k)-code C is a perfect code if every element of
Gq(n, k) is contained in one and only one sphere S(V, k, t) with V ∈ C and t =

⌊
δ−1
2

⌋
. If

we want to emphasize the radius of the sphere, we use the definion of t-perfect codes.

Remark 3.1.5. From the definition it follows that the code which consists of all the
k-dimensional spaces in Gq(n, k) is perfect. So the whole space is always a perfect code.
Another trivial perfect code is a single element of Gq(n, k).

From [7] and [31], respectively [17], we know that for any q, n and k, there are no
nontrivial perfect codes in Gq(n, k) and Pq(n). We will discuss this in Section 3.3.

Theorem 3.1.6 (Sphere-Covering bound). There exists an (n,M, d, k)-code C in Gq(n, k)
with d = 2δ that satisfies

M

(
δ−1∑
i=0

qi
2

[
k

i

][
n− k
i

])
>

[
n

k

]
,

or equivalently

Aq(n, 2δ, k) >
|Gq(n, k)|

|S(n, k, δ − 1)|
=

[
n

k

]
δ−1∑
i=0

qi
2

[
k

i

][
n− k
i

] .

Proof. Let C be an optimal (n,M, d, k)-code over a finite field Fq, so M = Aq(n, 2δ, k).
Since C has the maximal size, there cannot be a subspace of Gq(n, k) whose distance from
every codeword in C is at least 2δ. If there was such a subspace, we could include it as
a codeword in C but this contradicts the maximality of the size of C.
Therefore, for every subspace U ∈ Gq(n, k) there is at least one codeword V ∈ C such
that d(U, V ) 6 2δ−2, since the distances between subspaces in Gq(n, k) are even. Hence,
every word in Gq(n, k) is covered by at least one of the spheres of radius δ − 1 around
the codewords C. In other words

Gq(n, k) ⊆ ∪V ∈CS(V, k, δ − 1).

Hence we have [
n

k

]
6M · |S(n, k, δ − 1)|,

and the sphere-covering bound follows from Lemma 3.1.2.
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3.1.2 Singleton bound

To prove the Singleton bound in Gq(n, k) we use the same technique as in the original
case, namely, puncturing. So we begin by defining a suitable puncturing operation on
constant-dimension codes.

Suppose C is a subset of Pq(n), the set of subspaces of a fixed ambient vector space
W of dimension n. Let W ′ be any subspace of W of dimension n − 1. A punctured
code C ′ is obtained from C by replacing each space V ∈ C by V ′ = Hk−1(V ∩ W ′),
where Hk−1 denotes the erasure operator defined in Definition 2.1.2. This means that
V is replaced by V ∩W ′ if V ∩W ′ has dimension k − 1. If V ⊆ W ′, V is replaced by
some (k − 1)-dimensional subspace of V . Although this puncturing operation does not
in general result in a unique code, we denote any such punctured code by C|W ′ .

Theorem 3.1.7. If C ⊆ Gq(n, k) is an (n,M, d, k)-code with d > 2 and W ′ an (n− 1)-
dimensional subspace ofW, then C ′ = C|W ′ is an (n−1,M, d′, k−1)-code with d′ > d−2.

Proof. It is clear that we only need to verify the cardinality M and the minimum distance
d′ of C ′.
We first prove that d′ > d − 2. Suppose that U and V are two codewords of C with
corresponding codewords U ′ = Hk−1(U ∩ W ′) and V ′ = Hk−1(V ∩ W ′) of C ′. Since
U ′ ⊆ U and V ′ ⊆ V , we have U ′ ∩ V ′ ⊆ U ∩ V . Together with the property that
d(U, V ) = 2k − 2 dim(U ∩ V ) > d, we get

2 dim(U ′ ∩ V ′) 6 2 dim(U ∩ V ) 6 2k − d.

So in C ′ we have

d(U ′, V ′) = dim(U ′) + dim(V ′)− 2 dim(U ′ ∩ V ′)
= 2(k − 1)− 2 dim(U ′ ∩ V ′)
> 2k − 2− (2k − d)
= d− 2.

Since d > 2, d(U ′, V ′) > 0, so U ′ and V ′ are distinct, which shows that C ′ has indeed as
many codewords as C.

In the next theorem, we give the counterpart of the classical Singleton bound. So from
Theorem 3.1.10 it will follow that for all integers q > 2, n, d = 2δ, with 1 6 d 6 n,

Aq(n, 2δ, k) 6

[
n− δ + 1

k − δ + 1

]
. (3.1.1)

Most articles use (3.1.1) when they refer to the Singleton bound. With the following
lemma, we can describe the Singleton bound in a more precise way, as stated in [28].

Lemma 3.1.8. For any n, k, l ∈ N with n > k > l > 0 and n > k + l,[
n− l
n− k

]
<

[
n− l
k

]
if and only if k < n− k.
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Proof. From Definition 1.4.3 we know that

[
n− l
n− k

]
=

(qn−l − 1)(qn−l−1 − 1) . . . (qn−l−(n−k−1) − 1)

(qn−k − 1)(qn−k−1 − 1) . . . (q − 1)
, (3.1.2)[

n− l
k

]
=

(qn−l − 1)(qn−l−1 − 1) . . . (qn−l−(k−1) − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
. (3.1.3)

As we can see (3.1.2) has n − k factors in the numerator and also n − k factors in the
denominator and (3.1.3) has k factors in both numerator and denominator.

Suppose k < n− k. Then we can rewrite (3.1.2) as

qn−l − 1

q − 1
· (qn−l−1 − 1)

q2 − 1
· · · q

n−l−(k−1) − 1

qk − 1︸ ︷︷ ︸
=[n−lk ]

· q
n−l−k − 1

qn−k − 1
· q

n−l−k−1 − 1

qn−k−1 − 1
· · · q

n−l−(n−k−1) − 1

qk+1 − 1︸ ︷︷ ︸
<1

.

The first k factors give
[
n−l
k

]
. The other factors are each less than 1, because the power

of q in the numerator is always l less than the power of q in the denominator. So in this
case we get [

n− l
n− k

]
<

[
n− l
k

]
.

If k > n− k, we just get the other way around. So this proves the lemma.

Remark 3.1.9. The conditions of Lemma 3.1.8 are only necessary for the existence of
the Gaussian coefficients.

Theorem 3.1.10 (Singleton bound). Any q-ary (n,M, d, k)-code C ⊆ Gq(n, k), with
d = 2δ, must satisfy

|C| 6
[

n− δ + 1

max(k, n− k)

]
.

Proof. If C is punctured d−2
2

= δ−1 times, by applying Theorem 3.1.7 exactly δ−1 times,
we obtain an (n− δ + 1,M, d′, k − δ + 1)-code C ′, with d′ > 2. Since this code cannot
have more (k − δ + 1)-dimensional codewords than the corresponding Grassmannian
Gq(n− δ + 1, k − δ + 1), it follows that

|C| = |C ′| 6
[
n− δ + 1

k − δ + 1

]
=

[
n− δ + 1

n− k

]
.

Applying the same technique to the complementary code C⊥, the upper bound is
[
n−δ+1
k

]
.

We now verify the conditions of Lemma 3.1.8 for l = δ−1, i.e. k > δ−1 and n > k+δ−1.
The first condition holds because of the definition of the metric. For the second condition,
consider two codewords U, V ∈ Gq(n, k) with d(U, V ) = 2δ. Since

2δ = d(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) = 2k − 2 dim(U ∩ V ),

it follows that dim(U ∩ V ) = k − δ and so

n > dim(U + V ) = 2k − (k − δ) = k + δ > k + δ − 1.

Then, from Lemma 3.1.8, it follows that
[
n−δ+1
n−k

]
<
[
n−δ+1
k

]
if and only if k < n− k. This

implies the Singleton bound.
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3.1.3 Some other bounds

In this subsection, we will improve the sphere-packing bound and the Singleton bound
using three completely different methods, but they will all lead to the same result. For
this bounds, we rely on the article of Etzion and Vardy [17].

First of all, we consider a more general structure than a sphere in the case of Gq(n, k).

Definition 3.1.11. An anticode A of diameter r in Gq(n, k) is any subset of Gq(n, k)
such that d(U, V ) 6 2r for all U, V ∈ A .

Example 3.1.12. An example of such an anticode of diameter r is the sphere S(W,k, t)
for some W ∈ Gq(n, k) with t = r

2
. This follows from the triangle inequality, since for all

U, V ∈ S(W,k, t), necessarily

d(U, V ) 6 d(U,W ) + d(W,V ) 6 2t+ 2t = 2r.

As the sphere is an example of an anticode, the sphere-packing bound is a special case
of the anticode bound. This bound was shown by Delsarte for arbitrary association
schemes in [13]. In this work, he proved the following result.

Theorem 3.1.13 (Delsarte). Let X and Y be subsets of the vertex set V of a distance
regular graph Γ, such that the nonzero distances occurring between vertices of X do not
occur between vertices of Y . Then

|X||Y | 6 |V |.

In particular, this theorem implies the next corollary, when we set X as a code C with
minimum distance 2δ and Y an anticode A of diameter δ − 1.

Corollary 3.1.14.

Aq(n, 2δ, k) 6
|Gq(n, k)|
|A (δ − 1)|

for any anticode A (δ − 1) of diameter δ − 1.

If we take the sphere S(W,k, t) as anticode in the previous inequality, with t =
⌊
δ−1
2

⌋
,

we get indeed the sphere-packing bound.

In the binary Hamming space, spheres are the largest anticodes1. But that is not true
in Gq(n, k), on the contrary, these spheres S(n, k, t) are small anticodes in Gq(n, k). To
find the largest anticode in Gq(n, k), we will make use of the results of the q-analogues of
Erdős-Ko-Rado sets (see Section 1.4). Combining this with Corollary 3.1.14 gives us an
improvement of the sphere-packing bound. In [42], they proved that this bound is even
stronger than the Singleton bound.

1In the case of the Hamming space, the anticode A of diameter r will be defined as the subset of Fn
q

such that d(x, y) 6 2r for all x, y ∈ A.
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Theorem 3.1.15.

Aq(n, 2δ, k) 6

[
n

k

]
[
n− k + δ − 1

δ − 1

] .
Proof. An anticode of diameter δ − 1 is a set of k-dimensional subspaces such that for
every U, V ∈ Gq(n, k),

d(U, V ) = 2k − 2 dim(U ∩ V ) 6 2(δ − 1),

or equivalently,
dim(U ∩ V ) > k − δ + 1.

Theorem 1.4.5 shows that the largest anticode of diameter δ−1 is the set of all subspaces
with dimension k, containing a fixed (k − δ + 1)-dimensional subspace of V (n, q), with
size

[
n−k+δ−1

δ−1

]
. Applying Corollary 3.1.14 for this anticode and we get the theorem.

Another way of improving the sphere-packing bound is the next theorem, which is based
upon a standard covering argument.

Theorem 3.1.16.

Aq(n, 2δ, k) 6

[
n

k − δ + 1

]
[

k

k − δ + 1

] . (3.1.4)

Proof. Let C be an (n,M, 2δ, k)-code. Each codeword of C contains exactly
[

k
k−δ+1

]
subspaces of dimension k − δ + 1. But a given (k − δ + 1)-dimensional subspace of Fnq
cannot be contained in two distinct elements U, V ∈ C, since otherwise

d(U, V ) = 2k − 2 dim(U ∩ V ) 6 2k − 2(k − δ + 1) = 2δ − 2.

The total number of subspaces of Fnq of dimension k− δ+ 1 is
[

n
k−δ+1

]
. This implies that

M cannot be larger than

[
n

k−δ+1

][
k

k−δ+1

] .
Remark 3.1.17. It is clear from the proof of the above theorem that if C attains the
bound of (3.1.4), then every subspace of Fnq of dimension k− δ+ 1 must be contained in
exactly one codeword of C. Such codes are called Steiner structures. We discuss this in
Chapter 4 and 5.

The third theorem of this section gives again a better bound for the maximum number of
codewords in an (n,M, d, k)-code in Gq(n, k). It uses iteratively Theorem 3.1.19, which
is shown in the next subsection.

Theorem 3.1.18.

Aq(n, 2δ, k) 6
k−δ∏
i=0

qn−i − 1

qk−i − 1
.
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Proof. Apply Theorem 3.1.19 iteratively k−δ+1 times, stopping with the trivial equality
Aq(n − k + δ − 1, 2δ, δ − 1) = 1, since for two different codewords U and V of an
(n− k + δ − 1,M, 2δ, δ − 1)-code C it would follow that

d(U, V ) = 2(δ − 1)− 2 dim(U ∩ V ) 6 2δ − 2.

We have discussed these three bounds together in this subsection, because we can verify
directly from the definition of the Gaussian coefficient that[

n

k

]
[
n− k + δ − 1

δ − 1

] =

[
n

k − δ + 1

]
[

k

k − δ + 1

] =
k−δ∏
i=0

qn−i − 1

qk−i − 1
,

so the three theorems give the same result. These bounds are always stronger than the
Singleton bound and the sphere-packing bound ([42]).

Furthermore, in the next section we shall see that we can still improve these bounds a
little bit.

3.1.4 Johnson bounds

The three following theorems are the q-analogues in Gq(n, k) of the classical Johnson
bounds for constant-weight codes (see Subsubsection 1.1.3.3).

Theorem 3.1.19.

Aq(n, d, k) 6
qn − 1

qk − 1
Aq(n− 1, d, k − 1).

Proof. Let C be an (n,M, d, k)-code in Gq(n, k), and suppose that M = Aq(n, d, k). The
number of one-dimensional subspaces of Fnq which are contained in each (k-dimensional)

codeword of C is qk−1
q−1 . Since the total number of such subspaces is qn−1

q−1 , the mean of
codewords in which a one-dimensional subspace is contained is

M · q
k − 1

q − 1
· q − 1

qn − 1
.

So there is a one-dimensional subspace X ∈ Gq(n, 1) that is contained in at least M · qk−1
qn−1

codewords of C. Assume that X is spanned by a vector x ∈ Fnq , so X = 〈x〉. We can
write Fnq = X ⊕Y for some Y ∈ Gq(n, n− 1), because we can take for example the basis
{x, e1, . . . , en−1} for Fnq and set Y = 〈e1, e2, . . . , en−1〉. Let us now define

C ′ := {V ∩ Y|V ∈ C and X ⊂ V }.

From this definition all codewords of C are contained in Y and since X * Y , every
codeword in C ′ is k − 1-dimensional. So C ′ can be seen as an (n− 1,M ′, d′, k − 1)-code,

where M ′ >M qk−1
qn−1 by our choice of X . If we can show that d′ = d, it would follow that

Aq(n, d, k) 6
qn − 1

qk − 1
Aq(n− 1, d, k − 1).
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In fact, it is sufficient to show that d′ > d. Indeed, if C ′ would be an (n−1,M ′, d′, k−1)-
code with d′ > d, take two spaces at the minimum distance d′ and change one of them
in such a way that the distance between the two spaces decrease to d.

Now, in order to proof that d′ > d, we consider two arbitrary codewords U ′, V ′ ∈ C ′ such
that U ′ = U ∩ Y and V ′ = V ∩ Y , with corresponding codewords in C such that X ⊂ U
and X ⊂ V . Note that U ′ ∩ V ′ = (U ∩ Y) ∩ (V ∩ Y) = (U ∩ V ) ∩ Y , so we get

dim(U ′ ∩ V ′) = dim(U ∩ V ) + dim(Y)− dim((U ∩ V ) + Y).

Since X is contained in U ∩ V , Fnq = (U ∩ V ) + Y and it follows that

dim(U ′ ∩ V ′) = dim(U ∩ V ) + (n− 1)− n = dim(U ∩ V )− 1.

This implies that

d(U ′, V ′) = dim(U ′) + dim(V ′)− 2 dim(U ′ ∩ V ′)
= k − 1 + k − 1− 2(dim(U ∩ V )− 1)

= 2k − 2 dim(U ∩ V )

= d(U, V )

> d,

so d′ > d.

The next bound will be proved in two different ways. The first uses techniques akin to
the proof of Theorem 3.1.19. The proof of the second counterpart of the Johnson bound
can be proved easier by using Theorem 3.1.19, as you will see in the second proof of the
following theorem. Remark that this technique is similar to the proof of Theorem 1.1.40,
which also uses complementary codes.

Theorem 3.1.20.

Aq(n, d, k) 6
qn − 1

qn−k − 1
Aq(n− 1, d, k).

Proof 1. Assume that C is an (n,M, d, k)-code with M = Aq(n, d, k). Take an arbitrary
Y ∈ Gq(n, n− 1) and define the code

CY := {V |V ∈ C and V ⊂ Y}.

For each Y ∈ Gq(n, n−1), this code CY is an (n−1,MY , d
′, k)-code with d′ > d. Any given

k-dimensional subspace U of Fnq is contained in precisely qn−k−1
q−1 elements of Gq(n, n− 1).

Since

(qn − qk)(qn − qk+1) · · · (qn − qn−2)
(qn−1 − qk)(qn−1 − qk+1) · · · (qn−1 − qn−2)

=
qkqk+1 . . . qn−2(qn−k − 1) · · · (q2 − 1)

qkqk+1 . . . qn−2(qn−k−1 − 1) · · · (q − 1)

is the number of possibilities to choose n − 1 − k vectors that extend U to an (n − 1)-
dimensional subspace, divided by the number of possibilities to choose n− 1− k vectors
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that extend U to the same (n − 1)-dimensional subspace. Thus, each codeword of C is

also a codeword of qn−k−1
q−1 different codes CY . Therefore, we get

∑
Y

|CY | = M
qn−k − 1

q − 1
,

where the sum is taken over all the qn−1
q−1 elements of Gq(n, n− 1). Hence, there exists at

least one Y ∈ Gq(n, n− 1) such that

|CY | >M
qn−k − 1

qn − 1
.

The theorem follows from the fact that, for all W ∈ Gq(n, n− 1),

Aq(n− 1, d, k) > |CY | > Aq(n, d, k)
qn−k − 1

qn − 1
.

The next proof of Theorem 3.1.20 uses the first counterpart of the classical Johnson
bound, Theorem 3.1.19, and the observation that d(U⊥, V ⊥) = d(U, V ), as shown in
(2.2.4).

Proof 2. If C is an (n,M, d)-code in Pq(n), then its orthogonal complement C⊥ is also
an (n,M, d)-code, as observed in Subsection 2.2.2, so Aq(n, 2δ, k) = Aq(n, 2δ, n− k). It
follows from Theorem 3.1.19 that

Aq(n, d, n− k) 6
qn − 1

qn−k − 1
Aq(n− 1, d, n− k − 1).

But again, since the size of a code is the same as the size of its complementary code, we
have Aq(n− 1, 2δ, n− k − 1) = Aq(n− 1, 2δ, k). This leads us to 3.1.20.

If we iterate Theorem 3.1.19 and Theorem 3.1.20, we obtain a bound on Aq(n, 2δ, k) for
any n, k and d. But it is still an open problem to find in which order they should be
iterated to get the best bound, even for the problem in the Johnson space. However, we
can just iterate Theorem 3.1.19 with itself. Combining this with the observation that
for all k < δ we have Aq(n, 2δ, k) = 1, this gives us the following bound. Note that the
limit q → 1 will give us Corollary 1.1.39.

Theorem 3.1.21.

Aq(n, 2δ, k) 6

⌊
qn − 1

qk − 1

⌊
qn−1 − 1

qk−1 − 1
· · ·
⌊
qn−k+δ − 1

qδ − 1

⌋
· · ·
⌋⌋

.

Remark 3.1.22. Note that if we ignore all the floors in Theorem 3.1.21, we simply
get Theorem 3.1.18. This means that Theorem 3.1.21 is always at least as strong, and
usually stronger, as the theorems in Subsection 3.1.3.
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3.2 Bounds on codes in projective space

In the previous section we gave analogons in Gq(n, k) for classical bounds of coding
theory. It is not trivial to generalize this to bounds in Pq(n), since we already noticed
in Remark 2.2.9 that spheres of the same radius in Pq(n) can have different sizes. That
is the reason why we cannot use the same technique for the q-analogue of the sphere-
packing bound in Pq(n) as in Theorem 3.1.3. Also for other bounds, the q-analogue is
still an open problem. However, for the sphere-covering bound, Etzion and Vardy get
around the problems of different sizes of spheres by using the ‘average size of a sphere’,
which is done in [17].

Working towards Theorem 3.2.5, we will start by giving the definition of a sphere in
Pq(n).

Definition 3.2.1. Let V ∈ Pq(n) be a subspace of the ambient n-dimensional vector
space W . The sphere Sr(V ) of radius r centered at V ∈ Pq(n) is defined as

Sr(V ) := {U ∈ Pq(n)|d(U, V ) 6 r}. (3.2.1)

As we did in the case of constant-dimension codes, we want to determine the size of this
sphere Sr(V ).

Let c(j, k, r) denote the number of j-dimensional subspaces in a sphere of radius r
around a k-dimensional subspace of Fnq . That is, c(j, k, r) = |Sr(V ) ∩ Gq(n, j)| for all
V ∈ Gq(n, k). Note that the number of elements in S(n, k, t) is c(k, k, 2t).

Lemma 3.2.2.

c(j, k, r) =

min(j,k)∑
i=d k+j−r2 e

[
k

i

][
n− k
j − i

]
q(j−i)(k−i).

Proof. For a given V ∈ Gq(n, k), the number of ways to choose an i-dimensional subspace
U of V , with i 6 k, is

[
k
i

]
. Fix such a U and assume i 6 j. The number of subspaces

U ′ ∈ Gq(n, j) such that V ∩ U ′ = U is the number of ways to extend U to some U ′,
i.e. the number of (j− i)-tuples of linearly independent vectors not in V , divided by the
number of possibilities to choose these vectors to achieve the same U ′, i.e. the number
of ways to choose j − i linearly independent vectors in a j-dimensional subspace U ′ not
in a subspace U of dimension i. This is

(qn − qk)(qn − qk+1) · · · (qn − qk+j−i−1)
(qj − qi)(qj − qi+1) · · · (qj − qj−1)

=

[
n− k
j − i

]
q(j−i)(k−i). (3.2.2)

One achieves the equation by taking qk out of a factor in the numerator and qi out of a
factor in the denominator and doing this j − i times. Since the vector spaces V and U ′

have to be in a sphere of radius r,

d(V, U ′) = dim(V ) + dim(U ′)− 2 dim(V ∩ U ′) = k + j − 2i 6 r

and this only holds if and only if i > k+j−r
2

. Note that at the beginning of this proof,
we assumed i 6 j and i 6 k, so i 6 min(j, k). Hence summing over i brings us to the
lemma.
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Lemma 3.2.3. For all V ∈ Pq(n) with dimV = k, we have

|Sr(V )| = Sk,r :=
r∑
j=0

j∑
i=0

[
k

i

][
n− k
j − i

]
qi(j−i),

in which we set
[
k
i

]
= 0, by convention, for i /∈ {0, 1, . . . , k}.

Proof. We obtain |Sr(V )| by taking the sum over all c(j, k, r) for j = 0, . . . , n. From
Lemma 3.2.2, it follows that

|Sr(V )| =
n∑
j=0

c(j, k, r) =
∑

(i,j)∈S

[
k

i

][
n− k
j − i

]
q(j−i)(k−i), (3.2.3)

with

S = {(i, j) ∈ Z2|0 6 j 6 n and

⌈
k + j − r

2

⌉
6 i 6 min(j, k)}.

Taking the sum over a set

S ′ = {(i, j) ∈ Z2|0 6 j 6 n and max(0,

⌈
k + j − r

2

⌉
) 6 i 6 min(j, k)}

does not change (3.2.3), because
[
k
i

]
= 0 for i < 0. Note that if j < 0, it follows that

j− i < −i 6 0 and
[
n−k
j−i

]
= 0, and if j > n, it follows that j− i > n− i > n−k and then

also
[
n−k
j−i

]
= 0. These observations give us the opportunity to set no restrictions on j in

the adapted subset of Z2, over which we take the sum. The only remaining condition
for (i, j) ∈ Z2 is the lower bound

⌈
k+j−r

2

⌉
for i, because if i < 0 or i > k,

[
k
i

]
= 0 and if

i > j, then
[
n−k
j−i

]
= 0 since j − i < 0.

This means that |Sr(V )| =
∑

(i,j)∈S′′
[
k
i

][
n−k
j−i

]
q(j−i)(k−i), with a set S ′′ equal to

{(i, j) ∈ Z2|i >
⌈
k + j − r

2

⌉
} = {(i, j) ∈ Z2|2i > k+j−r} = {(i, j) ∈ Z2|k+j−2i 6 r}.

By substituting j′ := j + k − 2i, we get

|Sr(V )| =
∑
i∈Z

∑
j′6r

[
k

i

][
n− k

j′ − k + i

]
q(j
′−k+i)(k−i).

Another substitution i′ := k − i leads us to∑
i′∈Z

∑
j′6r

[
k

k − i′

][
n− k
j′ − i′

]
q(j
′−i′)i′ =

∑
j′6r

∑
i′∈Z

[
k

k − i′

][
n− k
j′ − i′

]
q(j
′−i′)i′ .

Recall the property of the Gaussian coefficient,
[
k

k−i′
]

=
[
k
i′

]
, and the fact that

[
k
i′

]
= 0 if

i′ < 0 and
[
n−k
j′−i′
]

= 0 if j′ − i′ < 0. This proves the lemma.
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To prove the counterpart of sphere-covering bound2, we use the work of Tolhuizen ([36]),
which extends the Gilbert-Varshamov bound to graphs that are not necessarily distance-
regular. In [36], Tolhuizen establishes the following intuitive, but not obvious, result.

Theorem 3.2.4. If Sr is the average size of a sphere of radius r in a graph G = (V,E),
then there exists a code C in G with minimum (graph) distance d and

|C| > |V |
Sd−1

.

This implies the following theorem.

Theorem 3.2.5.

Aq(n, d) >

n∑
k=0

n∑
j=0

[
n

k

][
n

j

]
n∑
k=0

d−1∑
j=0

j∑
i=0

[
n

k

][
k

i

][
n− k
j − i

]
qi(j−i)

.

Proof. Note that Pq(n) = ∪nk=0Gq(n, k) and so |Pq(n)| =
∑n

k=0

[
n
k

]
. In the case of Pq(n),

in the relevant graph G = (V,E),

|V | = |Pq(n)| =
n∑
k=0

[
n

k

]
and the average size of a sphere of radius d− 1 in G is

Sd−1 =

∑
V ∈Pq(n) |Sd−1(V )|
|Pq(n)|

=
1

|Pq(n)|

n∑
k=0

[
n

k

]
Sk,d−1

=

n∑
k=0

[
n

k

] d−1∑
j=0

j∑
i=0

[
k

i

][
n− k
j − i

]
qi(j−i)

n∑
j=0

[
n

j

] .

We use Theorem 3.2.4 and we obtain immediately the derived inequality.

3.3 Perfect codes

In Subsection 3.1.1 we already mentioned the concept of perfect codes for constant-
dimension codes. These codes achieve, by definition, the sphere-packing bound. This
means that an (n,M, 2δ, k)-code C is a perfect code if and only if every element of Gq(n, k)
is contained in one and only one sphere S(V, k, t) with V ∈ C and t =

⌊
δ−1
2

⌋
.

To generalize the definition for all codes in projective space, we use the concept of the
sphere as in Definition 3.2.1.

2The sphere-covering bound is often denoted as (the weaker version of) the Gilbert-Varshamov bound.
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Definition 3.3.1. An (n,M, d)-code C of Pq(n) is said to be e-perfect if the spheres of
radius e centered at the codewords both pack and cover Pq(n), or, in other words, if
every element of Pq(n) is contained in one and only one sphere Se(V ), V ∈ C.

For any q or n, there are always two trivial perfect codes in Pq(n). The whole space is
0-perfect, and any single element of X ∈ Pq(n) gives an n-perfect code. When n = 2e+1,
the binary Hamming space and the Johnson space J (2n, n) (see Subsection 1.1.3) admit
a third type of a trivial perfect code. Also in the case of Pq(n), we have another example
of perfect codes, i.e. the code consisting of the null-space {0} and Fnq . Nevertheless, in
the Grassmannians we do not have a third example of such trivial perfect codes.

In the next subsections we discuss the fact that there are no more perfect codes than the
trivial ones stated above. The main part of this section about perfect codes is the proof
of the nonexistence of nontrivial codes in Pq(n) of Etzion and Vardy [17]. But first, we
give a sketch of the method used in [31] which shows that nontrivial perfect codes in the
special case of the Grassmannian do not exist.

3.3.1 Nonexistence of nontrivial perfect codes in Gq(n, k)

In [7] Chihara proved that many infinite families of classical distance-regular graphs
do not have nontrivial perfect codes. This includes that the Grassmann graph do not
have perfect codes and that, consequently, nontrivial perfect codes do not exist in the
Grassmannian. Chihara used a technique with zeroes of Askey-Wilson polynomials.

In [31] the same result for Grassmann graphs (and also for bilinear forms graphs) is
proved, but in a different, more elementary way. Martin and Zhu used Delsarte’s anticode
condition (see Theorem 3.1.13), i.e. if for two nonempty subsets X and Y of the set of
vertices of a distance-regular graph G(V,E) and for each distance i > 1, at least one of
the two sets contains no pair of vertices at distance i, then

|X||Y | 6 |V |.

To use Delsarte’s Theorem, we introduce the concept of an e-perfect code and an anticode
of a graph G.

Definition 3.3.2. An e-perfect code in a graph G is a subset X of the vertices such
that every vertex of G is at distance e or less from one and only one element of X.

This definition implies that an e-perfect code contains no pair of vertices at distance i,
for 1 6 i 6 2e, since the minimum distance is equal to d = 2e+1. Moreover, an e-perfect
code in a distance-regular graph has size |V |

|Se| , where Se is a sphere of radius e around
any vertex, since every element of V has to be in exactly one such sphere Se.

Definition 3.3.3. In a graph G(V,E), any subset Y of V such that the maximum
distance between elements of Y is at most δ is called an anticode of diameter δ.

Remark 3.3.4. Also note that in Definition 3.1.11, an anticode in Gq(n, k) of radius
r consists of a subset of elements of Gq(n, k) such that the maximum distance between
two different elements is at most 2r. This is not a surprise, since we know that the
distance in the Grassmann graph is half of the distance in the Grassmannian Gq(n, k)
(see Definition 2.2.8).
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Theorem 3.1.13 can now be used with an anticode of diameter δ and any code of minimum
distance at least δ + 1. To study the existence of perfect codes, i.e. to prove that there
are no nontrivial perfect codes in the Grassmann graph, we can make use of the theorem
of Delsarte. Let X be an e-perfect code. If there exists an anticode of diameter at most
2e with a cardinality larger than |Se|, this will be sufficient to prove that the graph has

no e-perfect code. Since |X| = |V |
|Se| , then we find a contradiction with Delsarte’s theorem.

And indeed, in [31], Martin and Zhu give an anticode Y of a Grassmann graph Gq(n, k)
of diameter 2e, having a cardinality such that |Y | − |Se| is always strictly positive.

3.3.2 Nonexistence of nontrivial perfect codes in Pq(n)

We already noted in Remark 2.2.9 that Pq(n) is not distance-regular, so the methods
based upon association schemes and distance-regular graphs, as in [7] and Subsection
3.3.1, cannot be applied. Therefore, in [17], completely different techniques are used.
Based on that article, we explain in this section how Etzion and Vardy did this, starting
with the following lemma.

Lemma 3.3.5.

Aq(n, 2k, k) 6

⌊
qn − 1

qk − 1

⌋
− 1 if n 6≡ 0 (mod k).

Proof. Write n = mk + r, where r is the remainder obtained dividing n by k and by
assumption, 0 < r < k. Now assume to the contrary that there exists an (n,M, 2k, k)-

code C in Gq(n, k) with M =
⌊
qn−1
qk−1

⌋
. Since

qn − 1

qk − 1
=
qn − qn−k

qk − 1
+
qn−k − 1

qk − 1

= qn−k +
qn−k − qn−2k

qk − 1
+
qn−2k − 1

qk − 1

= · · ·

= qn−k + qn−2k + . . .+ qn−mk +
qr − 1

qk − 1
, (3.3.1)

it follows that M = qn−k+qn−2k+. . .+qn−mk. Furthermore, denote by V1, V2, . . . , VM the
codewords of C. Since d(Vi, Vj) = dim(Vi) + dim(Vj)− 2 dim(Vi ∩ Vj) > 2k for different
codewords Vi, Vj ∈ Gq(n, k), it follows that Vi ∩ Vj = {0} for all i 6= j. This implies
a partition of Fnq \{0} into M + 1 disjoint sets in the following way. For all i, define
V ∗i = Vi\{0}. These sets V ∗i , together with the set X ⊆ Fnq of all vectors in Fnq that are
not contained in any codeword of C, partition Fnq \{0}, or in other words

Fnq \{0} = V ∗1 ∪ V ∗2 ∪ · · · ∪ V ∗M ∪X. (3.3.2)
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The observations (3.3.2) and (3.3.1) imply the size of X, that is

|X| = |Fnq \{0}| −M · (qk − 1)

= qn − 1−
⌊
qn − 1

qk − 1

⌋
· (qk − 1)

= (qn−k + qn−2k + . . .+ qn−mk) · (qk − 1) + qr − 1

− (qn−k + qn−2k + . . .+ qn−mk) · (qk − 1)

= qr − 1.

Consider a fixed nonzero vector u ∈ Fnq and a set S ⊂ Fnq and denote by ηu(S) the
number of vectors in S that are not orthogonal to u, i.e.

ηu(S) := |{x ∈ S| 〈x, u〉 6= 0}|,

where the inner product is over Fq. Note that ηu(V
∗
i ) = ηu(Vi), for all i. This value is

zero if Vi ⊆ u⊥ or, if not every vector of Vi is in the orthogonal complement of u,

ηu(Vi) = |Vi| − |Vi ∩ u⊥| = qk − qk−1 = (q − 1)qk−1.

Furthermore, since every nonzero vector of Fnq is never orthogonal with all vectors of Fnq ,
ηu(Fnq ) = (q − 1)qn−1. Therefore

ηu(X) = ηu(Fnq \{0})−
M∑
i=1

ηu(V
∗
i )

is divisible by qk−1. But since |X| = qr − 1 < qk − 1, this implies that ηu(X) = 0. This
holds for all nonzero u ∈ Fnq , from which it follows that the set X cannot contain any
nonzero vectors. But this contradicts the fact that |X| = qr − 1 with 0 < r < k, and so
the inequality of the lemma follows.

Now we are ready to prove that the only perfect codes in a projective space Pq(n) for
given q and n, are the trivial perfect codes.

Theorem 3.3.6. For all q and n, there are no nontrivial perfect codes in the projective
space Pq(n).

Proof. Let us assume to the contrary that C is a nontrivial e-perfect code in Pq(n). Write
d = 2e+ 1 and define

Ck := C ∩ Gq(n, k), k = 0, 1, . . . , n.

We distinguish between two cases, i.e. whether {0} is an element of the code, or not.

Case 1. {0} ∈ C.
We have C1 = C2 = · · · = C2e = ∅, because otherwise, there would be two different
codewords in the sphere around the codeword {0}. This means also that for i 6 e,
every i-dimensional subspace is contained in the sphere Se({0})}. On the other hand, an
(e+ 1)-dimensional subspace U cannot be contained in Se({0}), since d(U, {0}) = e+ 1.
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Furthermore, this subspace U can also not be contained in a sphere Se(V ), for a codeword
V of dimension larger than or equal to d+ 1 = 2e+ 2. Indeed, otherwise

d(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) > e+ 1 + 2e+ 2− 2(e+ 1) = e+ 1.

Consequently, every element of Gq(n, e + 1) has to be covered by exactly one sphere
centered at a codeword of Cd. Moreover, if there is an arbitrary subspace U ∈ Gq(n, e+ 1)
in the sphere Se(V ) for a codeword V ∈ Cd, such that dim(U∩V ) 6 e, then it follows that
d(U, V ) > e+ 1 + 2e+ 1− 2e = e+ 2, which gives a contradiction. This means that in
this case, U has to be contained in such a d-dimensional codeword V . Therefore we
can say that every element of Gq(n, e+ 1) has to be covered by a codeword of Cd. This
structure is called a Steiner structure Sq(e + 1, d, n)3. Since the number of (e + 1)-
dimensional subspaces in Pq(n) is

[
n
e+1

]
and every codeword in Cd covers exactly

[
d
e+1

]
such subspaces, we have4

|Cd| =
[
n
e+1

][
d
e+1

] =
(qn − 1)(qn−1 − 1) · · · (qn−e − 1)

(qd − 1)(qd−1 − 1) · · · (qd−e − 1)
.

For the subspaces U ′ of Gq(n, e+ 2) and a codeword V ′ ∈ Gq(n, 2e+ 3), it follows that

d(U ′, V ′) = e+ 2 + (2e+ 3)− 2 dim(U ′ ∩ V ′) > e+ 1,

so we find analogously that every (e + 2)-dimensional subspace has to be contained
in a sphere Se(V ), for a codeword V with dim(V ) 6 2e + 2. If U ∈ Gq(n, e + 2),
V ∈ Cd and dim(U ∩ V ) 6 e + 1, then d(U, V ) > e + 2 + 2e + 1 − 2(e + 1) = e + 1.
Therefore, every (e+ 2)-dimensional subspace in a sphere with radius e and centered at
a d-dimensional codeword, has to be a subspace of that codeword. Each subspace of Cd
covers

[
d
e+2

]
elements of Gq(n, e+ 2). Therefore, there remain

[
n
e+2

]
− |Cd| ·

[
d
e+2

]
elements

of Gq(n, e + 2) uncovered, and each of them must be covered by a codeword of Cd+1. In
search of the size of |Cd+1|, we count the number of pairs (U, V ) with U ∈ Gq(n, e + 2)
and V ∈ Cd+1 such that U ⊆ V . Double counting gives us([

n

e+ 2

]
− |Cd| ·

[
d

e+ 2

])
· 1 = |Cd+1| ·

[
d+ 1

e+ 2

]
,

which implies that

|Cd+1| =
[
n
e+2

]
− |Cd| ·

[
d
e+2

][
d+1
e+2

]
=

(qn−1)···(qn−e−1−1)
(qe+2−1)···(q−1) −

(qn−1)···(qn−e−1)
(q2e+1−1)···(qe+1−1) ·

(q2e+1−1)···(qe−1)
(qe+2−1)···(q−1)

(q2e+2−1)···(qe+1−1)
(qe+2−1)···(q−1)

=
(qn − 1) · · · (qn−e − 1)

(q2e+2 − 1) · · · (qe+1 − 1)
·
(
qn−e−1 − 1− qe + 1

)
.

3In Chapter 4 we will define a Steiner structure Sq(t, k, n) as a subset S of Gq(n, k) such that each
element of Gq(n, t) is contained in exactly one subspace of S.

4This also follows from Theorem 4.1.6, where the size of a Steiner structure Sq(t, k, n) is given.
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For two elements V, V ′ ∈ Cd+1 the distance is d(V, V ′) > 2(d + 1) − (d + 1) = d + 1, so
Cd+1 is an (n,M, d+ 1, d+ 1)-code. This implies the inequality

Aq(n, d+ 1, d+ 1) > |Cd+1| =
(qn − 1) · · · (qn−e − 1)

(q2e+2 − 1) · · · (qe+1 − 1)
·
(
qn−e−1 − qe

)
. (3.3.3)

Now, applying Theorem 3.1.19 iteratively e+ 1 times, starting with Aq(n, d+ 1, d+ 1),
we get

Aq(n, d+ 1, d+ 1) = Aq(n, 2e+ 2, 2e+ 2)

6
qn − 1

q2e+2 − 1
Aq(n− 1, 2e+ 2, 2e+ 1)

6 · · ·

6
(qn − 1) · · · (qn−e − 1)

(q2e+2 − 1) · · · (qe+2 − 1)
· Aq(n− (e+ 1), 2e+ 2, 2e+ 2− (e+ 1)).

(3.3.4)

Combining the upper bound (3.3.4) and the lower bound (3.3.3) for Aq(n, d+ 1, d+ 1),
gives us

Aq(n− (e+ 1), 2e+ 2, e+ 1) >
1

qe+1 − 1
·
(
qn−e−1 − qe

)
= qe · q

n−2e−1 − 1

qe+1 − 1

or, if we write m = n− (e+ 1) and k = e+ 1,

Aq(m, 2k, k) >
qm − qk−1

qk − 1
= qk−1 · q

m−k+1 − 1

qk − 1
.

We already observed that Cd is a Steiner structure Sq(e + 1, d, n). Applying Corollary

4.2.25 for parameter i = e, gives us the condition that
[
d−e
1

]
has to divide

[
n−e
1

]
, so qd−e−1

q−1

has to divide qn−e−1
q−1 or equivalently6 d− e = e+ 1 = k has to divide n− e = m+ 1.

Using (3.3.1) and the just mentioned fact that k divides m+ 1, we get

qk−1 · q
m−k+1 − 1

qk − 1
= qk−1 ·

(
qm−2k+1 + qm−3k+1 + · · ·+ 1

)
= qm−k + qm−2k + · · ·+ qk−1

=

⌊
qm − 1

qk − 1

⌋
,

which implies the inequality

Aq(m, 2k, k) >

⌊
qm − 1

qk − 1

⌋
. (3.3.5)

5This is proved independently from this theorem, so we can use it here.
6This argument is also discussed in Section 4.2, i.e. below Corollary 4.2.2.
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Since k = e+ 1 divides m+ 1, it cannot divide m, so m 6≡ 0 (mod k). Therefore (3.3.5)
is in contradiction with Lemma 3.3.5.

Case 2. {0} 6∈ C.
In the proof of this case, we will construct a certain partition of Fnq and then apply a
counting argument to this partition in order to obtain a contradiction.

For the counting argument, we introduce a function η from subsets of Fnq to N. This
function sends a set S ⊆ Fnq to the value η(S), which denotes the number of vectors
(x1, x2, . . . , xn) in S such that x1 = 1. If S is a vector space of dimension i and if
moreover η(S) 6= 0, then S intersects the hyperplane X1 = 0 in an (i − 1)-dimensional
subspace which consists of qi−1 vectors. There remain qi − qi−1 = qi−1(q − 1) vectors in
S with a nonzero first coordinate. Since S is a vector space, to obtain the vectors with
x1 = 1, we have to divide by |Fq\{0}|, and so we get η(S) = qi−1.

Now, let X ∈ C be a vector space of the smallest dimension among all the vector spaces
in C. Since we are in Case 2, X 6= {0} and so we can assume that η(X) 6= 0, if necessary
by permuting the coordinates of the ambient space Fnq . Let k = dim(X). In order to
construct a partition of Fnq , we want that the sphere with radius e around X covers the
null-space {0}, and so k 6 e. Also note that n > e, otherwise, C would be a trivial
perfect code. Now consider the hyperplane of all vectors with x1 = 0. Since η(X) 6= 0,
X cannot be contained in the hyperplane X1 = 0, so the dimension of the intersection of
this hyperplane with X is k − 1. Therefore, we can find a vector space V of dimension
e − k in the hyperplane X1 = 0, which intersects trivially with X. Consequently, there
are no vectors in V with x1 = 1, so η(V ) = 0. Furthermore, define the vector space
W := X ⊕ V . Because of the construction of V , we have dim(W ) = e, and since
η(X) 6= 0, it follows that η(W ) = qe−1.

Let us now define a subcode C ′ of C in the following way:

C ′ := {Y ∈ C|V ⊂ Y and dim(Y ) = d− k}.

Suppose that C ′ contains M codewords Y1, Y2, . . . , YM . For all i = 1, . . . ,M , let us define
Y ∗i = Yi\V . We now claim that these sets Y ∗i , together with W , form a partition of Fnq .
Assume now that

Y ∗1 ∪ Y ∗2 ∪ · · · ∪ Y ∗M ∪W (3.3.6)

is indeed a partition of Fnq (we will prove this later on). Since dim(Yi) = d − k and
η(V ) = 0, it follows that η(Y ∗i ) = η(Yi) is either 0 or qd−k−1 = q2e−k for all i. Furthermore
η(Fnq ) = qn−1 and hence,

η(W ) = η(Fnq )−
M∑
i=1

η(Y ∗i )

must be divisible by q2e−k. But, we have already shown that η(W ) = qe−1. But
e− 1 < 2e− k for all k 6 e, so this gives a contradiction.

The only remaining part of the proof of this theorem is that we have to prove that (3.3.6)
is indeed a partition of Fnq . We will first prove that every element of Fnq is contained in
the set (3.3.6) and that all these sets do not pairwise intersect.
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Claim 1. Let u be a vector of Fnq that lies outside of W , then there exists a codeword
Yi ∈ C ′ such that u ∈ Yi.

Proof. Let U = 〈V, u〉. This vector space U has dimension e−k+1 and has to be covered
by a sphere Se(Y ), for some codeword Y ∈ C. Since U ∩X = {0} and therefore

d(X,U) = dim(X) + dim(U)− 2 dim(X ∩ U) = k + (e− k + 1)− 0 = e+ 1,

this codeword is not X. From the fact that X and Y are distinct codewords of C, we
must have d(X, Y ) > d. This implies that

dim(Y ) = d(X, Y )− dim(X) + 2 dim(X ∩ Y ) > d− k = 2e+ 1− k.

Furthermore, we have

d(U, Y ) = dim(U) + dim(Y )− 2 dim(U ∩ Y )
> (e− k + 1) + dim(Y )− 2(e− k + 1)
> (2e+ 1− k)− (e− k + 1)
= e.

(3.3.7)

On the other hand, since Se(Y ) covers U , we know that d(U, Y ) 6 e. Therefore,
d(U, Y ) = e and every inequality in (3.3.7) is an equality, so the only possible value
of dim(Y ) is d− k. This implies that

dim(U∩Y ) =
1

2
(dim(U)+dim(Y )−d(U, Y )) =

1

2
(e−k+1+d−k−e) = e−k+1 = dim(U),

from which it follows that V ⊂ U ⊂ Y and hence Y ∈ C ′. Finally, from the definition of
U , U ⊂ Y also implies that u ∈ Y , which shows that the claim holds.

If u is not contained in W = X ⊕ V and u ∈ Yi, then u must belong to Y ∗i = Yi\V .
Hence, this first claim shows that every vector is contained in at least one of the sets
Y ∗1 , Y

∗
2 , · · · , Y ∗M ,W . The next claim guarantees that all vectors are contained in at most

one of these sets.

Claim 2. The sets Y ∗1 , Y
∗
2 , . . . , Y

∗
M and W are pairwise disjoint.

Proof. Consider first two different codewords Yi and Yj in C ′. Since

d 6 d(Yi, Yj) = 2(d− k)− 2 dim(Yi ∩ Yj),

it follows from d = 2e+ 1 that dim(Yi∩Yj) 6 e−k = dim(V ) and therefore Yi∩Yj = V .
Consequently, the sets Y ∗1 , Y

∗
2 , . . . , Y

∗
M are pairwise disjoint.

Now assume to the contrary that there exists a nonzero vector y in the intersection
Y ∗i ∩W for some i. Then y ∈ Yi, and y = x+v for some nonzero x ∈ X and some v ∈ V .
But Yi is a vector space which contains the subspace V . Therefore Yi also contains the
vector y − v = x, and so dim(X ∩ Yi) > 1. But on the other hand,

d 6 d(X, Yi) = k + (d− k)− 2 dim(X ∩ Yi) 6 d− 2,

which is clearly a contradiction.

The proof of these two claims completes the proof of Case 2. Now we have indeed shown
that there are no nontrivial perfect codes in Pq(n).
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Chapter 4

Designs over Fq

A t-(n,k, λ) q-design over Fq is a set S of k-dimensional subspaces of the n-dimensional
vector space Fnq such that each t-dimensional subspace of Fnq is contained in exactly λ
elements of S. This is the q-analogue of the t-(n, k, λ) design defined in Definition 1.2.1.
Also the Steiner systems, i.e. designs with parameters t-(n, k, 1), have a q-analogue.
These will be called q-Steiner systems or Steiner structures . In geometrical terms,
a Steiner structure Sq(t, k, n) is called a (t, k)-spread . In this chapter we are amongst
other things interested in the existence of these Steiner structures. For example, Steiner
structures with t = 1 are known as spreads and exist if and only if k divides n. In
Chapter 5 we will explore these structures more in detail and link this with (partial)
spread codes. We will also discuss the recent result in [5] of the existence of a Steiner
structure S2(2, 3, 13).

Furthermore, this chapter discusses two other designs. A Steiner structure Sq(t, k, n)
is a subset S such that each element U ∈ Gq(n, k) is contained in exactly one subspace
of S. In a q-covering design this element U ‘only’ has to be contained in at least
one subspace of S. Also the dual notion, a q-Turán design , is considered. Along
with some elementary properties in Section 4.1, some upper and lower bounds will be
discussed. For some specific parameters (see e.g. in Subsection 4.4.1) this leads to exact
values for q-covering numbers.

We base our study here on the investigation of Schwartz and Etzion in [34], of Etzion
and Vardy in [18] and of Braun and Wassermann in [5].

4.1 Covering designs, Steiner structures and Turán

designs

In this section, we consider the q-analogues of covering designs, Steiner systems and
Turán designs, as defined in Subsection 1.2. We will assume that the ambient space W
is Fnq , but we want to point out that these results are valid for an arbitrary n-dimensional
vector space over Fq.
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Definition 4.1.1. A q-covering design C q(n,k, t) is a subset S of Gq(n, k) such
that each element of Gq(n, t) is contained in at least one subspace of S. The q-covering
number Cq(n,k, t) is the minimum size of a q-covering design Cq(n, k, t).

Definition 4.1.2. A Steiner structure S q(t, k,n)1 is a subset S of Gq(n, k) such
that each element of Gq(n, t) is contained in exactly one subspace of S.

A Steiner structure Sq(t, k, n), when it exists, is the smallest q-covering design Cq(n, k, t).

Definition 4.1.3. A q-Turán design T q(n,k, t) is a subset S of Gq(n, t) such that
each element of Gq(n, k) contains at least one subspace from S. The q-Turán number
T q(n,k, t) is the minimum size of a q-Turán design Tq(n, k, t).

There is a close relation between these concepts. The following theorem and corollary
show that q-covering designs and q-Turán designs are dual objects.

Theorem 4.1.4. A subset S of Gq(n, k) is a q-covering Cq(n, k, t) if and only if its
orthogonal complement S⊥ is a q-Turán design Tq(n, n− t, n− k).

Proof. Assume first that S is a q-covering design Cq(n, k, t). We have to prove that every
subspace in Gq(n, n−t) contains at least one element of S⊥ = {V ⊥ ∈ Gq(n, n−k)|V ∈ S}.
So take an arbitrary subspace U in Gq(n, n − t). Then dimU⊥ = t and, hence, there
exists at least one V ∈ S such that U⊥ ⊆ V . The key to success is the fact that

U⊥ ⊆ V ⇔ V ⊥ ⊆ U.

Since V ⊥ ∈ S⊥, this means that U contains at least one element of S⊥ and this proves
the first part of the theorem.

The proof of the necessary condition uses similar arguments. Let S be a q-Turán design
Tq(n, n − t, n − k) and consider U ∈ Gq(n, t), then U⊥ ∈ Gq(n, n − t) and it contains a
certain (n − k)-dimensional subspace V . Again, since V ⊆ U⊥ if and only if U ⊆ V ⊥,
every subspace U of Gq(n, t) is contained in at least one subspace of S⊥, hence S⊥ is a
q-covering design Cq(n, k, t).

Corollary 4.1.5.
Cq(n, k, t) = Tq(n, n− t, n− k).

We are also interested in the size of these designs. In particular in Section 4.4, we
discuss bounds on the sizes of q-covering designs and q-Turán designs. We already
noticed that Steiner structures are special cases of q-covering designs. This connection is
also demonstrated in the next theorem, which exhibits a lower bound on Cq(n, k, t) and
gives the size of a Steiner system Sq(t, k, n), if it exists.

1The parameters are a bit confusing, but we want to keep this notation, because of the link with
the notation of the classical concepts and also because it is well known in the literature. This is the
notation of [18]. A Steiner structure with parameters t, k and n is sometimes denoted as Sq[t, k, n] (see
e.g. [5]) or S[t, k, n] (see e.g. [34]).
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Theorem 4.1.6. Let S be a q-covering design Cq(n, k, t). Then

|S| >

[
n

t

]
[
k

t

] ,
with equality if and only if S is a Steiner structure Sq(t, k, n).

Proof. Every element of S is a k-dimensional subspace, and therefore contains exactly[
k
t

]
distinct t-dimensional subspaces. Since the total number of t-dimensional subspaces

inW is
[
n
t

]
, we need at least

[nt]
[kt]

elements in S to cover all these t-dimensional subspaces,

so

|S| >

[
n

t

]
[
k

t

] .
If |S| achieves this bound with equality, each t-dimensional subspace has to be con-
tained in exactly one element of S. This means that S is a Steiner structure Sq(t, k, n).
Furthermore, if S is a Steiner structure Sq(t, k, n), the number of elements is

|Gq(n, k)|
|Gq(k, t)|

=

[
n

t

]
[
k

t

] .

4.2 On the existence of Steiner structures and Steiner

systems

It follows from Theorem 4.1.6 that the most interesting q-covering designs are Steiner
structures. An important question is for which parameters Steiner structures do exist.
Two trivial examples of Steiner structures are Sq(t, n, n), which consists of one element,
i.e. the whole n-dimensional space, and Sq(t, t, n), for all t 6 n. In this section, the
discussion about the existence of nontrivial Steiner structures and Steiner systems is
considered. This has reached a new level since the construction of the Steiner structure
S2(2, 3, 13) in [5], which we will discuss in Section 4.3. We will start with some limitations
for the existence of Steiner structures on given parameters.

4.2.1 On the existence of nontrivial Steiner structures

Theorem 4.2.1. If Sq(t, k, n) exists, with t > 2, then Sq(t− 1, k − 1, n− 1) exists.
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Proof. Let S be a Steiner structure Sq(t, k, n). We can write the ambient space W as
W1 ⊕Wn−1, with W1 ∈ Gq(n, 1) and Wn−1 ∈ Gq(n, n− 1). We define the set S ′ as

S ′ := {U ∩Wn−1|U ∈ S and W1 ⊆ U}.

We claim that this set S ′ is a Steiner structure Sq(t − 1, k − 1, n − 1). From the
definition of S ′ every element of this set is contained in Wn−1. Since W1 * Wn−1, it
follows that all elements of S ′ are (k − 1)-dimensional. Furthermore, for each arbitrary
V ∈ Gq(n− 1, t− 1), V ⊕W1 is a t-dimensional subspace. Hence, V ⊕W1 is contained in
exactly one element U ∈ S. Therefore, V is contained in exactly one element of S ′, i.e. the
subspace U∩Wn−1. This means that S ′ is indeed a Steiner structure Sq(t−1, k−1, n−1),
and the theorem follows.

Together with Theorem 4.1.6, the previous theorem gives some necessary conditions on
the existence of a Steiner structure.

Corollary 4.2.2. If Sq(t, k, n) exists, then

[
n−i
t−i

][
k−i
t−i

] , for all 0 6 i 6 t−1, must be integers.

For t = 1, the previous corollary implies that the Steiner structure Sq(1, k, n) exists,
only if k divides n. Indeed, assuming that n = sk+ r, with 0 6 r 6 k−1, it follows that

qn − 1

qk − 1
=
qn − qn−k

qk − 1
+
qn−k − 1

qk − 1
= qn−k +

qn−k − qn−2k

qk − 1
+
qn−2k − 1

qk − 1

= qn−k + qn−2k + . . .+ qn−sk +
qr − 1

qk − 1
,

so
qn − 1

qk − 1
is an integer if and only if r = 0.

Furthermore, for every k which divides n, we can construct a Steiner structure Sq(1, k, n).
Let n = sk and let ξ ∈ Fqn be a root of a primitive polynomial of degree s over Fqk .
Denote

r =
qn − 1

qk − 1
= q(s−1)k + q(s−2)k + . . .+ qk + 1

and for each i, 0 6 i 6 r − 1, we define

Hi := {ξi, ξr+i, ξ2r+i, . . . , ξ(qk−2)r+i}.

If ξi+lr = ξj+mr, 0 6 l,m 6 qk− 2 and 0 6 i, j 6 r− 1, then i− j+ (l−m)r = 0, since ξ
is a primitive root. So every element of Fqn\{0} appears once and only once in a set Hi

for some i, 0 6 i 6 r − 1. It can also be verified that H0 ∪ {0} = Fqk and that all such
Hi, viewed as a set of vectors of length n over Fq, form a partition of Fnq . Each such set
is an element in Sq(1, k, n). This gives a regular Desarguesian spread.

The observation considered above leads us to the following corollary.

Corollary 4.2.3. A Steiner structure Sq(1, k, n) exists if and only if k divides n.
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We already mentioned in the beginning of this chapter that these specific Steiner struc-
tures with t = 1 are known as spreads and will be further discussed in Chapter 5.

For a long time, the Steiner structures Sq(1, k, n) were considered (and conjectured) to
be the only nontrivial Steiner structures. In what follows, two intervals in which only
trivial Steiner structures exist, are shown.

Theorem 4.2.4. If there exist Steiner structures Sq(t, k, n) with n 6 2k− t, then these
Steiner structures are trivial Steiner structures Sq(t, k, k).

Proof. Let S be a Steiner structure Sq(t, k, n) with n 6 2k − t. Assume U and V are
two different elements of S. It follows that dim(U ∩ V ) 6 t− 1 and hence,

dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V ) > 2k − t+ 1 > n,

which is a contradiction. Therefore S contains at most one element. Since every element
of Gq(n, t) has to be contained in this one k-dimensional element, this means k = n.

Theorem 4.2.5. If there exist Steiner structures Sq(t, k, n) with 2k− t < n < 2k, then
these Steiner structures are trivial Steiner structures Sq(k, k, n).

Proof. Let S be a Sq(t, k, n), with 2k − t < n < 2k. We will do a double counting on
the set

S := {(U, V )|U ∈ S and V ∈ Gq(n, 2k − t) such that U ⊆ V }.
Each element U ∈ S is contained in exactly

[
n−k

(2k−t)−k

]
=
[
n−k
k−t

]
subspaces V of dimension

2k−t. On the other hand, if two subspaces W1 and W2 of dimension k would be contained
in a subspace V ∈ Gq(n, 2k − t), then dim(W1 + W2) 6 2k − t and so dim(W1 ∩W2) =
dim(W1) + dim(W2)− dim(W1 +W2) > 2k − (2k − t) = t. So each (2k − t)-dimensional
subspace V contains no more than one element of S. Therefore,

|S| =
[
n− k
k − t

]
· |S| =

[
n− k
k − t

][n
t

]
[
k

t

] 6 |Gq(n, 2k − t)| =
[

n

2k − t

]
. (4.2.1)

Because of the property that
[
n
k

]
=
[
n

n−k

]
, the inequality of (4.2.1) implies[

n− k
k − t

]
[

k

k − t

] ·
[

n

n− t

]
[

n

n− 2k + t

] 6 1,

or equivalently, by the definition of the Gaussian coefficient,

(qn−k − 1) · · · (qn−2k+t+1 − 1)

(qk − 1) · · · (qt+1 − 1)
·

(qn−1)···(qt+1−1)
(qn−t−1)···(q−1)

(qn−1)···(q2k−t+1−1)
(qn−2k+t−1)···(q−1)

6 1.

⇔
(qn−k − 1) · · · (q − 1) · (qn−t − 1) · · · (qt+1 − 1)

(qk − 1) · · · (qt+1 − 1) · (qn−t − 1) · · · (q − 1) · (qn − 1) · · · (q2k−t+1 − 1)
6 1.
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Since k > t, it follows that 2k − t + 1 > t + 1 and we can simplify the inequality above
and get

(qn−k − 1) · · · (q − 1) · (q2k−t − 1) · · · (qt+1 − 1)

(qk − 1) · · · (qt+1 − 1) · (qn−t − 1) · · · (q − 1)
6 1.

Multiplying the numerator and denominator by (qt − 1) · · · (q − 1) gives us

(qn−k − 1) · · · (q − 1)

(qk − 1) · · · (q − 1)
· (q2k−t − 1) · · · (q − 1)

(qn−t − 1) · · · (q − 1)
6 1.

The assumption that n < 2k implies that n − k < k and n − t < 2k − t, so we can
eliminate some factors in the numerator and denominator. Replacing the remaining
factors in ascending order leads us to

(qn−t+1 − 1)(qn−t+2 − 1) · · · (q2k−t − 1)

(qn−k+1 − 1)(qn−k+2 − 1) · · · (qk − 1)
6 1. (4.2.2)

Now both the numerator and denominator have 2k − n factors. Since k > t, we know
that qn−t+i−1

qn−k+i−1 > 1, for i = 1, . . . , 2k − n. It follows that inequality (4.2.2) can hold only
if k = t, so we have a trivial Steiner structure.

Corollary 4.2.6. If a nontrivial Steiner structure Sq(t, k, n) exists, then n > 2k.

4.2.2 Deriving Steiner systems from Steiner structures

Recall that a Steiner system S(t, k, n) is a collection S of k-subsets of an n-set such that
every t-subset of the n-set is contained in exactly one block of S. We already noticed that
Steiner structures are the q-analogues of Steiner systems. Another link between these
concepts is established in Theorem 4.2.8 (based on [34]), which uses the next theorem.
It is a tool to obtain new Steiner systems from Steiner structures, using linear codes.

Theorem 4.2.7. Let S be a Steiner structure Sq(t, k, r) and let H be the set of column
vectors of the r × n parity-check matrix of an [n, k′, d]-code over Fq, where r = n − k′
and d− 1 > t. If there exists an integer v > t such that the set

S ′ := {U ∩H |U ∈ S and |U ∩H| > t}

is a collection of v-subsets of H, then S ′ is a Steiner system S(t, v, n).

Proof. By the fundamental theorem (see Theorem 1.1.25), every d − 1 columns in the
parity-check matrix of an [n, k′, d]-code are linearly independent. Consequently, the span
of each set of t columns from H forms a t-dimensional subspace, which is contained in
exactly one element of S, so these t vectors are also contained in exactly one block of S ′.
Since all the elements of S ′ are v-subsets of the n-set H, it follows that S ′ is a Steiner
system S(t, v, n).

Using Theorem 4.2.7 with Hamming codes, we obtain the following theorem.
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Theorem 4.2.8. The existence of a Steiner structure Sq(2, k, n) implies the existence

of Steiner systems S(2, q
k−1
q−1 ,

qn−1
q−1 ) and S(2, qk−1, qn−1). Furthermore, the existence of

S2(3, k, n) implies the existence of a Steiner system S(3, 2k−1, 2n−1).

Proof. If we take H to be the set of columns of the parity-check matrix of the linear
[ q
n−1
q−1 ,

qn−1
q−1 − n, 3]-code, so the Hamming code Ham(n, q), we have for every element

U of a Steiner structure Sq(2, k, n) with |U ∩ H| > 2, the same size of U ∩ H, so

v = |U ∩ H| = qk−1
q−1 , since all vector lines of a k-dimensional vector subspace have one

representative as column in the parity-check matrix. It follows from Theorem 4.2.7 that

a Steiner structure S(2, q
k−1
q−1 ,

qn−1
q−1 ) exists.

Let H be the set of columns from the parity-check matrix of the [qn−1, qn−1 − n, d]-code
over Fq, with d > 3, whose columns consist of all the vectors of length n ending with
a 1. Since the affine part of every subspace U ∈ Gq(n, k) consists of exactly qk−1 vectors
ending with a 1, the existence of Sq(2, k, n) implies, using Theorem 4.2.7, the existence
of S(2, qk−1, qn−1).

Finally, we take H to be the set of columns from the parity-check matrix of the linear

[2n−1, 2n−1 − n, 4]-code, i.e. the binary extended Hamming code Ĥam(n−1, 2). Again by
Theorem 4.2.7, we find that the existence of S(3, 2k−1, 2n−1) follows from the existence
of S2(3, k, n).

This theorem gives in a sense a limitation on the existence of Steiner structures Sq(t, k, n).
Nevertheless, Steiner systems of strength 2 seem not that rare, there are numerous Steiner
systems S(2, 2k−1, 2n−1) and S(2, 2k−1, 2n−1) (see e.g. [8]). However, the next theorem,
proved in [18], shows that constructing S2(2, k, n) is likely to be much harder than what
Theorem 4.2.8 suggests.

Theorem 4.2.9. The existence of a Steiner structure S2(2, k, n) implies the existence
of a Steiner system S(3, 2k, 2n).

Proof. Let S be a Steiner structure S2(2, k, n). Each subspace of S partitions Fn2 into
2n

2k
= 2n−k additive translates of itself. All such translates form the set

S ′ := {{u, u+ v1, u+ v2, . . . , u+ v2k−1}|{0, v1, . . . , v2k−1} ∈ S and u ∈ Fn2} .

We will prove that S ′ is a Steiner system S(3, 2k, 2n). First notice that the size of S ′ is
already exactly |S(3, 2k, 2n)|, because

|S ′| = 2n−k|S| = 2n−k
[
n
2

]
2[

k
2

]
2

=
2n

2k
(2n − 1)(2n−1 − 1)

(2k − 1)(2k−1 − 1)
=

(
2n

3

)(
2k

3

) = |S(3, 2k, 2n)|.

This means that to complete the proof, it is sufficient to prove that every subset {x, y, z}
of 3 elements of Fn2 is contained in some block of S ′. Since S is a Steiner structure
S2(2, k, n), the two-dimensional subspace {0, x + y, x + z, y + z} is contained in some
k-dimensional subspace V of S. From the definition of S ′, it follows that x + V is a
block of S ′. But x+ {0, x+ y, x+ z, y+ z} = {x, y, z, x+ y+ z} and therefore the subset
{x, y, z} is contained in the 2k-set x+ V .
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Numerous efforts were made to find Steiner systems of the form S(3, 2k, 2n) (see e.g. [18]
and [19]). Because of the existence of the trivial S2(3, 3, n) for all n > 3, it follows from
Theorem 4.2.8 that the Steiner system S(3, 4, 2n−1) exists, for all n > 3. Nevertheless,
the case where 2k > 8 is much harder. Theorem 4.2.9 implies that constructing a
Steiner structure S2(2, k, n), if such structures exist at all, would be very difficult too.
Furthermore, some people conjectured or were tempted to conjecture that they do not
exist.

In the search for more nontrivial Steiner structures S2(2, k, n), it is natural to start with
those of the form S2(2, 3, n). First, note that because of Corollary 4.2.2,[

n

2

]
2[

3

2

]
2

=
(2n − 1)(2n−1 − 1)

(23 − 1)(22 − 1)

and [
n− 1

1

]
2[

2

1

]
2

=
2n−1 − 1

22 − 1

have to be integers. The last condition means that 2 has to divide n − 1 (see also the
argumentation below Corollary 4.2.2) and consequently, 3 has to divide n or n − 1. So
it follows that {

n ≡ 1 (mod 2)

n ≡ 0 (mod 3)
or

{
n ≡ 1 (mod 2)

n ≡ 1 (mod 3)
(4.2.3)

or equivalently, by the Chinese remainder theorem,

n ≡ 3 (mod 6) or n ≡ 1 (mod 6).

So the first interesting Steiner structures to consider are S2(2, 3, 7), S2(2, 3, 9) and
S2(2, 3, 13). Until now, no Steiner structures S2(2, 3, 7) or, related by Theorem 4.2.9,
no Steiner systems S(3, 8, 128) have been found. There is also no prove of the existence or
nonexistence of Steiner structures S2(2, 3, 9). However, next to the spreads Sq(1, k, n),
there do exist nontrivial Steiner structures, which is recently proved in [5]. In the next
section, we discuss the construction of the Steiner system S2(2, 3, 13).

4.3 On the existence of Steiner structures S2(2, 3, 13)

and Steiner systems S(3, 8, 8192)

In the beginning of this chapter, we already observed that a Steiner structure is a special
case of a t-(n, k, λ) q-design with λ = 1. Of all the known t-(n, k, λ) q-designs, the
design with the largest value for t is a 3-(8, 4, 12) 2-design. In [4], Braun, Kerber and
Lauen found this by using a promising method. This 3-(8, 4, 12) 2-design, and also other
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known t-(n, k, λ) q-designs, were constructed with the Kramer-Mesner method ([27])
using as group of automorphisms the normalizer of a Singer cycle. This method will
also be very useful to construct a 2-(13, 3, 1) 2-design, also known as a Steiner structure
S2(2, 3, 13). This construction is very important, since this is the first construction
of a Steiner structure Sq(t, k, n) with t > 1, which implies that there do exist such
Steiner structures, despite of all the previous conjectures about the nonexistence of
these structures, nontrivial q-Steiner systems which are no spreads. In this subsection,
we first explain the Kramer-Mesner method and the Singer cycle and we then use these
concepts for the construction of S2(2, 3, 13), based on the recent preprint [5] of Braun
and Wassermann.

4.3.1 Kramer-Mesner method

In order to construct a Steiner structure S2(2, 3, 13) using the Kramer-Mesner method,
we will give some insightful examples.

Example 4.3.1. An ovoid O is a subset of points on the parabolic quadric Q(4, q) (see
e.g. [23] or [33] for more information) such that every line of Q(4, q) contains exactly
one point of O. Consider now the incidence matrix A where the indices2 i of the rows
correspond with the lines Li of Q(4, q) and the indices j of the columns correspond with
the points pj of Q(4, q). Therefore Aij = 1 if pj ∈ Li and Aij = 0 if pj /∈ Li. Since

|Q(4, q)| = q4−1
q−1 = q3+q2+q+1 and this value is also the number of generators of Q(4, q),

which are lines in this case, the matrix A is a square matrix of order q3 + q2 + q + 1.
Denote x to be a vector of length q3 + q2 + q + 1, with coordinates xi ∈ {0, 1}, which is
the characteristic vector of O. This means that xi = 1 if the i-th point of Q(4, q) is an
element of O and xi = 0 if not. Then we have

A · x =

1
...
1

 . (4.3.1)

Indeed, (4.3.1) is equivalent to∑
j

Aij · xj = 1, ∀i ∈ {1, . . . , q3 + q2 + q + 1},

and since Aij ∈ {0, 1} for all i, j, if
∑

j Aij · xj = 1, it follows that, for a fixed index i,
there is just one j such that Aijẋj = 1. This corresponds to the unique element pj ∈ O
on the line Li.

On the other hand, if we construct an incidence matrix for the lines and points of Q(4, q),
every 0-1-solution x of the equations (4.3.1) will also correspond to an ovoid of Q(4, q).
This technique will be used to find Steiner structures.

Example 4.3.2. A Steiner structure S2(2, 3, 13) can be seen as a set S of planes in
the projective space PG(12, 2), such that every line is contained in exactly one element

2The order of the indices can be taken arbitrarily, but once this is chosen, it has to be fixed.
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of S. The incidence matrix A is now defined as the matrix with entries Aij such that
Aij = 1 if the line Li is contained in the plane βj and Aij = 0 if Li is not contained in
βj. Note that the objects that have to be taken for the required set, are the elements
corresponding with the columns. Now, a Steiner structure S2(2, 3, 13), if it exists, would
correspond to a 0-1-solution x of (4.3.1). Namely, take the subset S of all planes βj such
that the index j corresponds to a nonzero element on position j in the characteric vector
x. Then, for an arbitrary line Li for some index i, there is exactly one plane βj which
covers Li, since there is only one unique j such that Aij · xj = 1. This follows from the
fact that for a fixed i,

∑
j Aij · xj = 1 and Aij > 0, so there has to be exactly one j such

that Aij · xj = 1 and Aik · xk = 0, for k 6= j. This argumentation indeed implies that the
subset S would be a Steiner structure S2(2, 3, 13).

In the more general case of a t-(n, k, λ) q-design, consider the incidence matrix At,k, where
the rows correspond to a t-subspace T ∈ Gq(n, t) and where the columns correspond to
a k-subspace K ∈ Gq(n, k). The entries aT,K of the matrix At,k are defined as follows:

aT,K :=

{
1 if T ⊆ K

0 otherwise.
(4.3.2)

Then in [4], the following corollary is stated.

Corollary 4.3.3. The set of t-(n, k, λ) q-designs on Fnq is the set of selections of k-
subspaces that can be obtained from the 0-1-solutions x of the system of linear equations

At,k · x =

λ...
λ

 ,
where the components of x are indexed by all k-subspaces K of Fnq . The set S of blocks
K of the design corresponding to the solution x is

S := {K ∈ Gq(n, k)|xK = 1} .

Since the number of lines in PG(12, 2) is (213−1)(212−1)
3

= 11180715 and the number of

planes in PG(12, 2) is (213−1)(212−1)(211−1)
(23−1)(22−1)(2−1) = 3269560515, it is clear that the incidence

matrix A2,3, defined in Example 4.3.2, is a (11180715×3269560515)-matrix. Solving the
equations of the linear system

A2,3 · x =

1
...
1


to obtain a Steiner structure S2(2, 3, 13), is, to say the least, really hard. For the same
reason, Corollary 4.3.3 is not very useful from the computational point of view, except
maybe for some smaller examples. Therefore, we want to reduce the size of the matrix
by using a group of automorphisms.
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An automorphism of a t-(n, k, λ) q-design S is an element φ of the general linear group
GL(n, q) which leaves the design invariant, i.e. it maps blocks into blocks. In fact, it just
permutes the design, so

{φ(K)|K ∈ S} = S.
Also the inclusion of t-dimensional subspaces T in subspacesK of dimension k is invariant
under the action of the automorphism, i.e.

T ⊆ K ⇒ φ(T ) ⊆ φ(K).

Therefore, for every T ∈ Gq(n, t) and every K ∈ Gq(n, k), the number of k-subspaces K ′

in the orbit of K which covers T is constant on the orbit of T .

A group consisting only of automorphisms of S is an automorphism group of S, the
maximal group with this property is called the automorphism group of S.

For a certain group G 6 GL(n, q) of automorphisms, consider now the G-incidence
matrix AGt,k between the G-orbits on t-subspaces and G-orbits on k-subspaces. The row
of the entry aGT,K of AGt,k corresponds to the orbit with representative T under the action
of G and the column of aGT,K corresponds to the G-orbit with representative K. This
entry aGT,K gives the number of k-dimensional subspaces in the orbit of K containing
the subspace T . This number is the same as the number of k-subspaces in the orbit
of K containing another t-subspace T ′ in the orbit of the representative T , because of
the definition of an automorphism. We will use this incidence matrix AGt,k to find a t-
(n, k, λ) q-design similar to the method of Corollary 4.3.3, but with a matrix with smaller
dimensions. The Kramer-Mesner method is the procedure which follows from the next
theorem.

Theorem 4.3.4. The set of t-(n, k, λ) q-designs S on Fnq having G 6 GL(n, q) as an
automorphism group, can be obtained from the 0-1-vectors solving the linear system of
equations

AGt,k · x =

λ...
λ


in the following way:

S :=
⋃

K:xK=1

KG,

where KG is the orbit of K under the automorphism group G.

In the case of the construction of Steiner structures S2(2, 3, 13) we will look to the orbits
of the projective lines T and projective planes K in PG(12, 2) under a certain group G
of automorphisms. The goal is to find solutions of the system

AG2,3 · x =

1
...
1

 , (4.3.3)

where the incidence matirx AG2,3 is defined as above, i.e. aGT,K is the number of projective
planes in the orbit of K which contain the projective line T .
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If aGT,K = 1 for some T and K, this means that for every line T ′ in the orbit of the line
T , there is one element K ′ in the orbit of K, such that T ′ is contained in K ′. Therefore,
such as in Theorem 4.3.4, if there is a 0-1-solution x of (4.3.3), taking all the 3-subspaces
K ′ in the orbit of every K for which xK = 1, will give us a Steiner structure S2(2, 3, 13).

Now the question arises, which group of automorphisms will be useful for this purpose.
This will be the normalizer of a Singer cycle, which we will describe in the following
subsection.

4.3.2 Singer cycle

In search of the answer to the problem of the existence of Steiner structures Sq(t, k, n)
for small parameters q, t, k, n, Etzion and Vardy concentrated in [19] on the parameter
t = 2, k = 3 and n = 13 and constructed a ‘near-Steiner structure’, a set S of 14
orbits on 3-dimensional subspaces of F13

2 with respect to the normalizer of the Singer
cycle G 6 GL(13, 2) such that each subspace of dimension 2 is contained in at most one
element of S. Also in [4] this group of automorphisms was promising for the construction
of a 3-(8, 4, 12) 2-design.

A Singer cycle of PG(n − 1, q) is a transformation α which acts in one orbit on the
points of PG(n− 1, q), i.e.

PG(n− 1, q) = {P, α(P ), α2(P ), . . .},

for an arbitrary point P of PG(n− 1, q).

Now, in PG(n−1, q), consider an (n×n)-matrix A with eigenvalues λ, λq, λq
2
, . . . , λq

n−1
,

with λ ∈ Fqn\Fq, λ a primitive element of Fqn . This means that the eigenvalues of A are
λ and its conjugates over Fq. Then this matrix defines a Singer cycle of PG(n− 1, q), as
we will show below.

Assume that α is defined by A and consider the orbit

{P, α(P ), α2(P ), . . . , αi(P ) = P}.

If αi(P ) = P , then Ai·P = µP , for some µ ∈ Fq\{0}, which means that µ is an eigenvalue
of Ai. This implies that µ ∈ {λi, λiq, . . . , λiqn−1}. Since λ ∈ Fqn is a primitive element,
λq

n−1 = 1 and there is no smaller power of λ with the same property. Furthermore, we
have

λq
n−1 =

(
λq

n−1+qn−2+···+q+1
)q−1

= 1.

This implies that the smallest value of i is qn−1+· · ·+q+1 = |PG(n−1, q)| and therefore
the orbit of a point P is the whole space PG(n−1, q) and |〈α〉| = qn−1+qn−2+ · · ·+q+1.

If you see α as an automorphism in the extended projective space PG(n− 1, qn), α fixes
the projective space PG(n − 1, q) as a projective space and it fixes pointwise n other
points of PG(n−1, qn)\PG(n−1, q). These points are the eigenvectors P ′, P ′q, . . . , P ′q

n−1

of A corresponding to the n eigenvalues λ, λq, . . . , λq
n−1

. Instead of considering the
automorphism group 〈α〉 6 GL(n, q), we take the normalizer of the Singer cycle:

NGL(n,q)(〈α〉) = {g ∈ GL(n, q)|g〈α〉g−1 = 〈α〉}
= 〈β, α〉,
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with β ∈ GL(n, q) such that β(P ′) = P ′q, β(P ′q) = P ′q
2
, . . . , β(P ′q

n−1
) = P ′, which is also

called the Frobenius automorphism . One inclusion of the last equality follows from
the fact that every element of this group 〈β, α〉 stabilizes the projective space PG(n−1, q)
and the set {P ′, P ′q, . . . , P ′qn−1}. The other inclusion is also valid. Furthermore, it follows
that

|NGL(n,q)(〈α〉)| = n · |〈α〉| = n · q
n − 1

q − 1
(4.3.4)

This group of automorphisms will help us to reduce the number of rows and columns
of the incidence matrix used for the Kramer-Mesner method, which will lead us to the
construction of Steiner structures S2(2, 3, 13).

4.3.3 Construction of S2(2, 3, 13)

This section on the construction of Steiner structures S2(2, 3, 13) is based on the article
[5] of Braun and Wassermann.

Let G = 〈F, S〉 6 GL(13, 2) be the normalizer of the Singer cycle, generated by the
following two matrices F and S, corresponding to a Frobenius automorphism and a
Singer cycle. These matrices are

F =



1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 1
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 1 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 1
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and

S =



0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0



.

It follows from (4.3.4) that the order of G is 13 · (213 − 1) = 106483. If there would be
a solution x of (4.3.3), with this specific G, every orbit of 3-subspaces has size 106483.
From Theorem 4.1.6, it follows that the size of a Steiner structure S2(2, 3, 13) is[

13
3

]
2[

13
2

]
2

=
(213 − 1)(212 − 1)

(23 − 1)(22 − 1)
= 1597245.

Therefore, we require 1597245
106483

= 15 orbits of 3-subspaces under G to obtain such a Steiner
structure. Note again that Etzion and Vardy found already in [19] a near-Steiner struc-
ture of 14 orbits such that each subspace of dimension 2 is contained in at most one
element of these orbits, using the normalizer of the Singer cycle.

In order to apply the Kramer-Mesner method, we need to construct the incidence matrix
AG2,3 between orbits of 2-subspaces T and orbits of 3-subspaces K. In [5], it is stated
that this matrix has 105 rows and 25572 columns whose entries are all 0 or 1. Note
that this strongly reduces the original (11180715× 3269560515)-incidence matrix. With
the dancing links algorithm by D. Knuth [26] on a standard desktop computer, it was
possible to solve the Diophantine linear system (4.3.3) and they found that there are at
least 26 solutions which define a Steiner structure S2(2, 3, 13). In Table 4.1, one solution
of 15 orbit representatives is given (see Table 1 of [5]). The union of all those 15 orbits
indeed gives a Steiner structure S2(2, 3, 13) of 15 · 106483 = 1597245 elements. From
Theorem 4.2.9, we also get the existence of Steiner systems S(3, 8, 8192).

To conclude this section, we summarize this important result in the following theorem.

Theorem 4.3.5. Steiner structures S2(2, 3, 13) and Steiner systems S(3, 8, 8192) do
exist.
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0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
1 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 1





0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 1 0
0 0 1





0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
1 0 0
0 1 0
1 0 0
0 0 0
0 0 1





0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0
1 0 0
0 0 0
1 0 0
0 1 0
1 1 0
1 0 0
0 0 1





0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 1 0
0 1 0
0 0 1




0 0 0
0 0 0
1 0 0
0 0 0
1 0 0
0 0 0
1 0 0
1 0 0
0 1 0
0 1 0
1 1 0
1 1 0
0 0 1





0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
1 0 0
1 0 0
0 1 0
1 0 0
0 0 0
1 0 0
1 0 0
0 0 1





1 0 0
0 0 0
0 0 0
1 0 0
0 0 0
1 0 0
1 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1





0 0 0
1 0 0
1 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
1 1 0
0 1 0
0 0 1





1 0 0
0 0 0
0 0 0
1 0 0
1 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 1 0
1 0 0
0 1 0
0 0 1




0 0 0
1 0 0
0 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 0 0
1 0 0
0 1 0
1 0 0
0 0 0
0 0 1





1 0 0
0 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 0 0
1 1 0
0 0 0
1 0 0
1 1 0
0 0 1





1 0 0
0 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 0 0
1 1 0
0 1 0
0 0 0
0 1 0
0 0 1





0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
1 0 0
0 1 0
1 1 0
1 0 0
0 0 0
1 0 0
0 0 0
0 0 1





0 0 0
1 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 1 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1


Table 4.1: The 15 orbit representatives of S2(2, 3, 13)
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4.4 Bounds on q-covering numbers

If a Steiner structure Sq(t, k, n) exists for given parameters, it follows from Theorem
4.1.6 that Cq(n, k, t) = |Sq(t, k, n)|. But it is clear from the discussions above that
Steiner structures Sq(t, k, n) do not always exist and if they exist, it is hard to prove
it. For a lot of specific parameters, the existence of such Steiner structures is still an
open problem. In this section, we want to reduce the interval of the possibilities for
the q-covering numbers Cq(n, k, t). In Subsection 4.4.2 and Subsection 4.4.3, upper and
lower bounds on q-covering numbers are established for general parameters q, n, k and t.
But first, we give the exact values of Cq(n, k, 1) and Cq(n, n− 1, t), results shown in [17],
making use of the relation with the q-Turán numbers. Also, some techniques and results
we discuss in these subsections, will be useful in the next chapter, when we talk about
(partial) spread codes.

4.4.1 The q-covering numbers Cq(n, k, 1) and Cq(n, n− 1, t)

Lemma 4.4.1.

Cq(n, k, 1) =
qn − 1

qk − 1
whenever k divides n.

Proof. From Theorem 4.1.6, it follows that a Steiner structure Sq(1, k, n) is an optimal
q-covering design Cq(n, k, 1), with

|Sq(1, k, n)| =
[
n
1

][
k
1

] =
qn − 1

qk − 1
,

when it exists. The condition for the existence of Sq(1, k, n), i.e. that k has to divide n,
is stated in Corollary 4.2.3. This proves the lemma.

Lemma 4.4.2.
Cq(n, k, t) 6 Cq(n− 1, k − 1, t).

Proof. We can represent Fnq as Wn−1 × Fq, for a given W ∈ Gq(n, n − 1), namely Fnq ={
(x, α)|x ∈ Fn−1q , α ∈ Fq

}
. Let S be a q-covering design Cq(n− 1, k− 1, t) in an (n− 1)-

dimensional space Wn−1, with |S| = Cq(n− 1, k − 1, t). For each V ∈ S, we define

V ′ := {(v, α)|v ∈ V and α ∈ Fq} .

This subspace V ′ is a k-dimensional subspace of Fnq = Wn−1 × Fq. If we coordinatize
this approach, we can set Xn = 0 to be Wn−1 and V ′ = V ⊕ 〈(0, . . . , 0, 1)〉, where V is
interpret in Fnq instead of in Fn−1q . Now denote S ′ as the set of all such subspaces V ′, i.e.

S ′ := {V ′ ∈ Gq(n, k)|V ∈ S}.

It is clear that |S ′| = |S|, so if we can show that this set S ′ is a q-covering design
Cq(n, k, t), then the q-covering number Cq(n, k, t) is at most the size of S ′, i.e. |S ′| =
|S| = Cq(n − 1, k − 1, t). Let us take a subspace R ∈ Gq(n, t). If R ⊆ Wn−1, then
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R ∩ Wn−1 is an t-dimensional subspace. So it is contained in at least one (k − 1)-
dimensional subspace V ∈ S, from which it follows that R is covered by some V ′ ∈ S.
On the other hand, if R * Wn−1, then R ∩ Wn−1 is an (t − 1)-dimensional and we
will consider two cases, i.e. whether (0, . . . , 0, 1) ∈ R or not. In the first case, where
(0, . . . , 0, 1) ∈ R, then we extend R ∩Wn−1 to a t-dimensional subspace, which is itself,
in turn contained in at least one element V of S. Extending this V with (0, . . . , 0, 1)
to a k-dimensional subspace, gives an element which covers R complety. For the second
case, where (0, . . . , 0, 1) /∈ R, then 〈R, (0, . . . , 0, 1)〉 ∩Wn1 is a t-dimensional subspace T .
This subspace T is by definition of S ′, covered by some (k − 1)-dimensional subspace V
in Wn−1. Extending subspace V with (0, . . . , 0, 1), gives us the element V ′ of S ′ which
contains 〈R, (0, . . . , 0, 1)〉. It follows that R is in this case too covered by at least one
k-dimensional element of S ′. So S ′ is a q-covering design Cq(n, k, t), which proves the
lemma.

Corollary 4.4.3. For all nonnegative integers δ, it follows that

Cq(n+ δ, k + δ, t) 6 Cq(n, k, t).

Lemma 4.4.4.

Cq(n, k, 1) = qn−k + 1 for k =
⌈n

2

⌉
,
⌈n

2

⌉
+ 1, . . . , n− 1.

Proof. By Lemma 4.4.1, we have

Cq(2(n− k), n− k, 1) =
q2(n−k) − 1

qn−k − 1
= qn−k + 1.

Let δ = 2k − n. If k > n
2
, then δ is a nonnegative integer. Therefore, we can use

Corollary 4.4.3 and we get

Cq(n, k, 1) = Cq(2(n− k) + δ, n− k + δ, 1) 6 Cq(2(n− k), n− k, 1) = qn−k + 1.

On the other hand, we know from Theorem 4.1.6 that Cq(n, k, 1) > qn−1
qk−1 . If 2k > n, we

can write n = k + r, with 0 6 r 6 k, so⌈
qn − 1

qk − 1

⌉
=

⌈
qn − qn−k

qk − 1
+
qn−k − 1

qk − 1

⌉
=

⌈
qn−k +

qr − 1

qk − 1

⌉
= qn−k + 1,

for all k =
⌈
n
2

⌉
,
⌈
n
2

⌉
+1, . . . , n−1. Therefore, it follows that Cq(n, k, 1) > qn−k+1, which

completes the proof of the lemma.

The proof of Lemma 4.4.4 indicates how q-covering designs which achieve the q-covering
number Cq(n, k, 1) = qn−k+1 can be constructed. There are several known constructions
of spreads (see e.g. in Subsection 4.2.1), so we can start with the construction of a spread
Sq(2(n−k), n−k, 1). Whenever k > n

2
, applying the construction described in the proof

of Lemma 4.4.2 iteratively δ = 2k − n times, gives such a q-covering design.

On the other hand, the method for k < n
2
, is completely different. In particular, we

will make use of the construction shown in the following lemma, based on the proof of
Theorem 11 in [17].
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Lemma 4.4.5. Let r be the remainder obtained when n is divided by k, and define
m = k + r. Then there exists a set X consisting of one m-dimensional subspace of Fnq
and qn−qm

qk−1 subspaces of Fnq of dimension k, such that

V ∩ V ′ = {0} for all distinct V, V ′ ∈ X . (4.4.1)

Proof. We will represent the vectors in Fnq as tuples (x, y) with x ∈ Fqn−m and y ∈ Fqm .
Let α be a primitive element of Fqn−m and let β be a primitive element of Fqm . First, we
define

W :=
〈
(0, β0), (0, β1), . . . , (0, βm−1)

〉
.

Since β0, β1, β2, . . . , βm−1 are linearly independent over Fq, we see that dimW = m. Let

t = qn−m−1
qk−1 , which is an integer because k divides n−m by our choice of m. Next, define

γ = αt and note that the multiplicative order of γ in Fqn−m is qk − 1. Therefore, γ is a
primitive element of Fqk , as a subfield of Fqn−m . This implies that 1, γ, γ2, . . . , γk−1 form
a basis for Fqk over Fq. Now, for i = 0, 1, . . . , t − 1 and j = 0, 1, . . . , qm − 2, we define
the t subspaces of Fnq

Ui :=
〈
(αi, 0), (αiγ, 0), . . . , (αiγk−1, 0)

〉
(4.4.2)

and the t(qm − 1) subspaces of Fnq

Vij :=
〈
(αi, βj), (αiγ, βj+1), . . . , (αiγk−1, βj+k−1)

〉
. (4.4.3)

Since 1, γ, γ2, . . . , γk−1 are linearly independent over Fq, it follows that dimUi = dimVij =
k for all i and j. Consider the set

X :=

(⋃
i

Ui

)
∪

(⋃
i,j

Vij

)
∪W.

The number of k-dimensional subspaces in X is

t+ t(qm − 1) =
qn−m − 1

qk − 1
+
qn−m − 1

qk − 1
(qm − 1) =

qn − qm

qk − 1
.

Furthermore, X has also one subspace of dimension m. So it remains to be proven that
(4.4.1) holds. First, note that for any nonzero vector (x, y) ∈ Fnq = Fqn−m×Fqm , we have

(x, y) ∈ W ⇒ x = 0, y 6= 0,

(x, y) ∈ Ui ⇒ x 6= 0, y = 0,

(x, y) ∈ Vij ⇒ x 6= 0, y 6= 0,

since both αi, αiγ, . . . , αiγk−1 and βj, βj+1, . . . , βj+k−1 are linearly independent over Fq,
for all i and j. This implies that,

W ∩ Ui = W ∩ Vij = Ui ∩ Vij = {0} for all i, j.

Next, observe that the construction of the subspaces Ui is similar to the construction of
the subspaces Hi in Subsection 4.2.1, where these Hi form a Steiner structure Sq(1, k, n).
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So it follows that the t subspaces U0, U1, . . . , Ut−1 form a k-spread in Fn−mq . Therefore,
Ui1 ∩ Ui2 = {0} for all i1 6= i2. The same arguments lead us to the fact that also
Vi1j1 ∩ Vi2j2 = {0} for all j1 and j2, whenever i1 6= i2. In order to complete the proof,
it remains to be shown that Vij1 ∩ Vij2 = {0} for every fixed i and all j1 6= j2. Assume
to the contrary that (x, y) is a nonzero vector in both Vij1 and Vij2 , and consider the
corresponding linear combinations of the basis vectors in (4.4.3), i.e.

x = a0α
i + a1α

iγ + · · ·+ ak−1α
iγk−1

= b0α
i + b1α

iγ + · · ·+ bk−1α
iγk−1

(4.4.4)

and
y = a0β

j1 + a1β
j1+1 + · · ·+ ak−1β

j1+k−1

= b0β
j2 + b1β

j2+1 + · · ·+ bk−1β
j2+k−1.

(4.4.5)

Since 1, γ, γ2, . . . , γk−1 are linearly independent over Fq, it follows from (4.4.4) that
a` = b` for all `. Hence, we can rewrite (4.4.5) as

(βj1 − βj2)(a0 + a1β + a2β
2 + · · ·+ ak−1β

k−1) = 0.

But since 1, β, β2, . . . , βk−1 are linearly independent over Fq, this implies that βj1 = βj2 .
Since β is a primitive root, it follows that j1 = j2, which is a contradiction. This
completes the constructive proof of this lemma.

Remark 4.4.6. If you take a one-dimensional subspace U of Fnq , then it follows from
(4.4.1) that there is at most one subspace V of X that contains U . The total number of
one-dimensional subspaces contained in some element of X is given by

qn − qm

qk − 1
·
[
k

1

]
+

[
m

1

]
=
qn − qm

qk − 1
· q

k − 1

q − 1
+
qm − 1

q − 1
=
qn − 1

q − 1
=

[
n

1

]
,

which is exactly the total number of one-dimensional subspaces in Fnq . This means that
every one-dimensional subspace of Fnq is contained in exactly one subspace of X . This
implies that X can be seen as a generalization of the notion of a spread to the case where
k does not divide n. We will discuss this in the last chapter, were the construction of
Lemma 4.4.5, used in Theorem 5.1.2, will give rise to the concept of partial spreads. Also
note that if k divides n, the parameter m in Lemma 4.4.5 is just k, the construction is
in fact the construction of a regular Desarguesian spread (see Subsection 4.2.1) and so,
the set X is a spread.

Theorem 4.4.7.

Cq(n, k, 1) =

⌈
qn − 1

qk − 1

⌉
.

Proof. As in Lemma 4.4.5, define r as the remainder obtained when n is divided by k,
and let m = k + r. If r = 0, the theorem follows from Lemma 4.4.1. Assume now that
k does not divide n and therefore k < m < 2k. In this case, we will use Lemma 4.4.5
and modify the set X to obtain a q-covering design Cq(n, k, 1) as follows. Let W denote
the single m-dimensional subspace of X and let S be a q-covering design consisting of k-
dimensional subspaces of W such that every one-dimensional subspace of W is contained
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in at least one element of S. Then clearly S∪(X\{W}) is a q-covering design Cq(n, k, 1).
Since dimW = m, it follows that

Cq(n, k, 1) 6
qn − qm

qk − 1
+ Cq(m, k, 1) =

qn − qm

qk − 1
+ qm−k + 1 =

qn − qr

qk − 1
+ 1, (4.4.6)

where the first equality follows from Lemma 4.4.4, since k < m < 2k. Note that k
divides n− r, so qn−qr

qk−1 is an integer. Furthermore, since r 6= 0,⌈
qn − 1

qk − 1

⌉
=

⌈
qn − qr

qk − 1
+
qr − 1

qk − 1

⌉
=
qn − qr

qk − 1
+ 1,

which is just the right hand side of (4.4.6). The other inequality, i.e.

Cq(n, k, 1) >

⌈
qn − 1

qk − 1

⌉
,

follows from Theorem 4.1.6.

Since q-covering designs and q-Turán designs are dual concepts, Corollary 4.1.5 gives us
that Tq(n, n − 1, t) = Cq(n, n − t, 1). Together with the previous theorem, this implies
the next corollary.

Corollary 4.4.8.

Tq(n, n− 1, t) =

⌈
qn − 1

qn−t − 1

⌉
.

In what follows we will also make use of the duality between q-covering designs and
q-Turán designs. The q-covering number Cq(n, n− 1, r) in particular will be achieved by
examining the q-Turán numbers Tq(n, k, 1). We begin with an elementary upper bound
on Tq(n, k, t) that holds for all q, n, k and t, of which the proof enables us to construct
a q-Turán design.

Lemma 4.4.9.

Tq(n, k, t) 6
[
n− k + t

t

]
.

Proof. Consider a fixed subspace U of Fnq of dimension n− k+ t. Let S be the set of all
t-dimensional subspaces of U . Then

|S| =
[
n− k + t

t

]
.

In order to find the inequality of the lemma, we will prove that this set S is a q-Turán
design Tq(n, k, t). So, take any arbitrary k-dimensional subspace V of Fnq . Then the
intersection U ∩ V is a subspace of U of which the dimension is

dim(U ∩ V ) = dimU + dimV − dim(U + V ) > (n− k + t) + k − n = t,

since U +V cannot have a dimension larger than the dimension of the ambient space Fnq .
This means that U ∩V must contain at least one element of S, so S is indeed a q-Turán
design Tq(n, k, t), from which the lemma follows.
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Corollary 4.4.10.

Cq(n, k, t) 6
[
n− k + t

t

]
.

Proof. From Corollary 4.1.5 we know that Cq(n, k, t) = Tq(n, n−t, n−k). We use Lemma
4.4.9 to obtain an upper bound on Tq(n, n− t, n− k). Observing that[

n− (n− t) + (n− k)

n− k

]
=

[
n− k + t

(n− k + t)− (n− k)

]
=

[
n− k + t

t

]
gives us the requested upper bound on Cq(n, k, t).

Theorem 4.4.11.

Tq(n, k, 1) =
qn−k+1 − 1

q − 1
for k = 1, 2, . . . , n.

Proof. Applying Lemma 4.4.9 for the case with t = 1, gives us

Tq(n, k, 1) 6
qn−k+1 − 1

q − 1
. (4.4.7)

Hence, it remains to be proven that qn−k+1−1
q−1 is also a lower bound on Tq(n, k, 1). Assume

to the contrary that S is an arbitrary set of one-dimensional subspaces with |S| =
qn−k+1−1

q−1 − 1. We claim that this set S cannot be a q-Turán design Tq(n, k, 1). This
means that there has to be at least one k-dimensional subspace of Fnq that does not
contain any element of S. Define U as the largest subspace of Fnq such that U ∩V = {0}
for all V ∈ S and let m = dimU . Note that m > 0, since U = {0} satisfies this
condition. If m > k, then every k-dimensional subspace of U does not contain any
element of S, which proves the theorem. Thus, let us assume that m < k. Now take a
fixed one-dimensional subspace V ∈ S and consider the vector space 〈V ∪ U〉, spanned
by all the vectors in the set V ∪ U . Since dimU = m, dimV = 1 and U ∩ V = {0},
it follows that dim 〈V ∪ U〉 = m + 1. Thus 〈V ∪ U〉 contains exactly qm+1 − qm vectors
that are not contained in U . Hence∣∣∣∣∣⋃

V ∈S

〈V ∪ U〉

∣∣∣∣∣ 6 |S| · (qm+1 − qm) + |U | (4.4.8)

= (
qn−k+1 − 1

q − 1
− 1) · qm(q − 1) + qm = qn−k+m+1 − qm(q − 1).

Because we assumed that m < k, qn−k+m+1 6 qn and so the right hand side of (4.4.8)
is bounded by qn − 1. Therefore, there exists a nonzero vector x ∈ Fnq such that
x /∈ ∪V ∈S 〈V ∪ U〉. Consider the vector space W := 〈{x} ∪ U〉. Suppose that for an
arbitrary V ∈ S, there exists a vector y 6= 0 such that y ∈ W ∩ V . Since y /∈ U ∩ V , it
follows that y /∈ U and so y has to be contained in {x}∪U . But y∪U = {x}∪U ⊆ 〈V ∪U〉
gives a contradiction, so we have W ∩ V = {0} for all V ∈ S and dimW = m+ 1. But
this contradicts the maximality of U . This implies that we must have m > k, which
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proves the claim that any set S of one-dimensional subspaces with |S| < qn−k+1−1
q−1 cannot

be a q-Turán design Tq(n, k, 1), so

|Tq(n, k, 1)| > qn−k+1 − 1

q − 1
,

which gives us, together with the inequality (4.4.7), the exact value of the q-Turán
number Tq(n, k, 1).

This theorem, together with the fact that Tq(n, n− t, 1) = Cq(n, n− 1, t), leads us to the
next corollary.

Corollary 4.4.12.

Cq(n, n− 1, t) =
qt+1 − 1

q − 1
.

The duality between designs Tq(n, n − t, 1) and Cq(n, n − 1, t) also helps to construct
q-covering designs which achieve the q-covering number Cq(n, n − 1, t) (see Corollary
4.4.12). First construct a q-Turán design Tq(n, n− t, 1) as in Lemma 4.4.9, i.e. construct
a set S of all one-dimensional subspaces of a fixed vector space U in Fnq of dimension
t + 1. Then take the orthogonal complement of S as in Theorem 4.1.4 and so S⊥ =
{V ⊥ ∈ Gq(n, n− 1)|V ∈ S} is a q-covering design with |S⊥| = qt+1−1

q−1 .

4.4.2 An upper bound on q-covering numbers

In the previous section we determined the q-covering numbers Cq(n, k, 1) and Cq(n, n−1, t)
and the corresponding q-Turán numbers Tq(n, n−1, t) and Tq(n, k, 1). We also examined
some general upper bounds on q-covering numbers and q-Turán numbers in Corollary
4.4.10 and Lemma 4.4.9 respectively. Although in [18], Etzion and Vardy make the
remark that these bounds are tight for t = 1 (see Theorem 4.4.11 and Corollary 4.4.12),
these bounds are quite weak for t > 2. Therefore they introduce a recursive construction
of q-covering designs that leads to a new general upper bound on Cq(n, k, t), which
improves Corollary 4.4.10 considerably.

Theorem 4.4.13.

Cq(n, k, t) 6 qn−kCq(n− 1, k − 1, t− 1) + Cq(n− 1, k, t).

Proof. As in Lemma 4.4.2, we represent the ambient n-dimensional vector space as

Fnq = Wn−1 × Fq =
{

(x, α)|x ∈ Fn−1q , α ∈ Fq
}
,

for some Wn−1 ∈ Gq(n, n−1). Let S1 be a q-covering design Cq(n−1, k, t) in Wn−1 of size
Cq(n−1, k, t) and S2 a q-covering design Cq(n−1, k−1, t) in Wn−1 of size Cq(n−1, k−1, t).
Given a subspace V of Wn−1, we want to lift this up to the n-dimensional vector space
Fnq by defining the corresponding subspace in Fnq as

V × {0} = {(v, 0) ∈ Fnq | v ∈ V }.
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It also follows that dim(V × {0}) = dimV . This construction will be used to lift up S1,
i.e.

S ′1 := {V × {0} ⊂ Fnq |V ∈ S1}.

Furthermore, for any V ∈ S2, there are exactly qn−1−(k−1) = qn−k cosets of V in Wn−1.
This implies that there are qn−k distinct subspaces of the form (V × {0})⊕ 〈(x, 1)〉, for
a fixed V ∈ S2. Let us now define

S ′2 :=
{

(V × {0})⊕ 〈(x, 1)〉 ⊂ Fnq |V ∈ S2, x ∈ Wn−1
}
,

and S ′ = S ′1 ∪ S ′2. By construction, this set S ′ consists of subspaces of Fnq , each of
dimension k, and the number of elements of S ′ is

|S ′| = |S1|+ qn−k|S2| = Cq(n− 1, k, t) + qn−kCq(n− 1, k − 1, t− 1). (4.4.9)

Consequently, if we can show that S ′ is a q-covering design Cq(n, k, t), the q-covering
number Cq(n, k, r) is bounded by (4.4.9). So it remains to be shown that for each t-
dimensional subspace U of Fnq there is a subspace V ′ ∈ S ′ such that U ⊂ V ′.

First, if the subspace U ⊂ Wn−1 × {0}, then U is contained in at least one subspace of
S ′1, since S ′1 is a q-covering design Cq(n− 1, k, t) in Wn−1 × {0}. If U is not a subset of
Wn−1×{0}, it must contain a vector of the form (x, 1) for some x ∈ Wn−1. This implies
that U can be spanned by vectors of the form {(u1, 0), (u2, 0), . . . , (ut−1, 0), (x, 1)} and
can be represented as (U ′ × {0}) ⊕ 〈(x, 1)〉 with U ′ = 〈u1, u2, . . . , ut−1〉. Since U ′ is a
(t−1)-dimensional subspace of Wn−1 and S2 is a q-covering design Sq(n−1, k−1, t−1)
in Wn−1, there exists a subspace V ∈ Wn−1 which covers the subspace U ′. This means
that the corresponding subspace (V × {0})⊕ 〈(x, 1)〉 of S ′2 contains U .

The construction of the previous theorem can be iterated to obtain an upper bound on
the minimum size of a q-covering design Cq(n, k, t) for any given set of parameters. For
example, we use Theorem 4.4.13 to derive an upper bound on C2(5, 3, 2). Since from
Corollary 4.4.12 we know that C2(4, 3, 2) = 7 and from Theorem 4.4.7 it follows that
C2(4, 2, 1) = 5 and so

C2(5, 3, 2) 6 22C2(4, 2, 1) + C2(4, 3, 2) = 22 · 5 + 7 = 27. (4.4.10)

This bound3 implies other upper bounds, i.e.

C2(6, 3, 2) 6 23C2(5, 2, 1) + C2(5, 3, 2) 6 23 · 11 + 27 = 115,

C2(7, 3, 2) 6 24C2(6, 2, 1) + C2(6, 3, 2) 6 24 · 21 + 115 = 451,

since we can use Theorem 4.4.7 again for the q-covering numbers Cq(n, k, t) with t = 1.
This example shows how to obtain an explicit upper bound for the parameter t = 2.
Indeed, we have

Cq(n, k, 2) 6 qn−kCq(n− 1, k − 1, 1) + Cq(n− 1, k, 2)

6 qn−kCq(n− 1, k − 1, 1) + qn−1−kCq(n− 2, k − 1, 1) + Cq(n− 2, k, 2).

3In [18] it is shown that C2(5, 3, 2) is exactly 27.
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Continuing in this manner, every q-covering number in the upper bound can be calculated
with Theorem 4.4.7, except for the last one. Corollary 4.4.12 gives the solution, i.e. the
process can be stopped if we reach Cq(n− (n−k−1), k, 2) = q3−1

q−1 . This means, we arrive
at the following upper bound:

Cq(n, k, 2) 6
q3 − 1

q − 1
+

n−k−1∑
i=1

qn−k−i+1

⌈
qn−i − 1

qk−1 − 1

⌉
.

4.4.3 Schönheim bound

In search of the exact values of q-covering numbers, we want to find q-covering designs
with a size as small as possible. So it is not strange that one wants to bring down these
values with upper bounds. However, it is also useful to have a notion of some lower
bounds to bring down the interval of possible values of Cq(n, k, t). We already have the
elementary lower bound of Theorem 4.1.6. In this subsection, we present a lower bound,
which is the q-analogue of the bound of Schönheim for classical coverign designs.

We will proof this bound and its corollary, based on the proof in [18], with the same
techniques as the proof of Theorem 1.2.7 and Corollary 1.2.8.

Theorem 4.4.14 (Schönheim bound).

Cq(n, k, t) >
⌈
qn − 1

qk − 1
Cq(n− 1, k − 1, t− 1)

⌉
.

Proof. Consider S, a q-covering design Cq(n, k, t) with |S| = Cq(n, k, t). Each element

of S contains
[
k
1

]
= qk−1

q−1 one-dimensional subspaces of Fnq and the total number of such

subspaces is qn−1
q−1 . So the average number of elements of S in which a one-dimensional

subspace is contained, is qk−1
qn−1 |S|. So there has to be a one-dimensional subspace W1 ⊂ Fnq

that is contained in at most qk−1
qn−1 |S| elements of S. Now we will use a technique similar

to that of Theorem 4.2.1. We can represent Fnq as W1⊕Wn−1, where Wn−1 is an (n− 1)-
dimensional subspace. Let us now define a set

S ′ := {U ∩Wn−1|U ∈ S and W1 ⊂ U} .

This construction implies that

|S ′| 6 qk − 1

qn − 1
|S| = qk − 1

qn − 1
Cq(n, k, t).

To prove the theorem, we will show that S ′ is a q-covering design Cq(n− 1, k − 1, t− 1)
of Wn−1. Since Wn−1 and W1 are disjoint and W1 ⊂ U for every U ∈ S corresponding
to an element of S ′, it follows that S ′ consists of (k− 1)-dimensional subspaces of Wn−1.
Now take an arbitrary (t − 1)-dimensional subspace V of Wn−1. Then W1 ⊕ V is a
t-dimensional subspace of Fnq and therefore, there exists a U ∈ S such that W1⊕V ⊂ U .
Consequently, U ′ = U ∩Wn−1 is an element of S ′ and V ⊂ U ′. This proves that S ′ is a
q-covering design Cq(n− 1, k − 1, t− 1) of Wn−1 and the theorem follows.
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Corollary 4.4.15.

Cq(n, k, t) >
⌈
qn − 1

qk − 1

⌈
qn−1 − 1

qk−1 − 1
· · ·
⌈
qn−t+1 − 1

qk−t+1 − 1

⌉
· · ·
⌉⌉

.

Proof. Applying Theorem 4.4.14 iteratively t− 1 times and observing that, by Theorem
4.4.7,

Cq(n− t+ 1, k − t+ 1, 1) =

⌈
qn−t+1 − 1

qk−t+1 − 1

⌉
,

the theorem follows.
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Chapter 5

Partial spreads and partial spread
codes in random network coding

5.1 Spread codes and partial spread codes

In the Section 1.2, we already mentioned that there is a nice link between design theory
and coding theory. For instance in Example 1.2.11, codes in the Johnson space can be
constructed from Steiner systems.

We can do an analogous construction to obtain an (n,M, d, k)-code in Gq(n, k) from a
Steiner structure Sq(t, k, n). We recall that a Steiner structure Sq(t, k, n) is also called a
(t, k)−spread, and that this is a subset S of Gq(n, k) such that each element of Gq(n, t) is
contained in exactly one subspace of S. This means that the intersection of two elements
U, V ∈ S cannot contain a t-dimensional subspace. Hence, dim(U ∩ V ) 6 t− 1 and

d(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V ) > 2(k − t+ 1).

Furthermore, if we can find two elements of S with an intersection of dimension t− 1, it
follows that the code obtained by taking the elements of the Steiner structure Sq(t, k, n),
has minimum distance 2(k − t + 1). Fix a (t − 1)-dimensional subspace X and count
the pairs (U, T ) where U is a k-dimensional block of S containing X, T an element
of Gq(t, n) containing X and such that T is a subspace of U . This implies that the

number of elements of S through a fixed (t − 1)-dimensional subspace is
[n−t+1

1 ]
[k−t+1

1 ]
> 2.

Consequently, if you take the elements of a Steiner structure Sq(t, k, n) as codewords,

this is an (n,M, d, k)-code in Gq(n, k) with M =
[nt]
[kt]

and d = 2(k − t+ 1).

Remark 5.1.1. Note that we already mentioned in Remark 3.1.17 that any (n,M, 2δ, k)-

code with M =
[ n
k−δ+1]

[ k
k−δ+1]

is a Steiner structure Sq(k − δ + 1, k, n).

In this chapter we are interested in the special case of Steiner structures with parameter
t = 1, i.e. spreads. If we want to emphasize that the subspaces of the spread are of
dimension k, sometimes the concept k-spread is used (see e.g. [21]). In other words, a
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k-spread of Fnq is a partition of Fnq in k-dimensional subspaces. The associated network
codes are called spread codes. Since a spread Sq(1, k, n) leads to an (n,M, 2k, k)-code,
we can translate the bounds for q-covering designs and Steiner structures to bounds for
specific codes. In particular, Lemma 4.4.1 implies that

Aq(n, 2k, k) =
qn − 1

qk − 1
, whenever k|n.

This result can be extended for the case where k does not divide n. We will use the
construction from Etzion and Vardy ([17]), shown in the proof of Lemma 4.4.5, to prove
the following theorem.

Theorem 5.1.2. Let n ≡ r (mod k). Then for all q, we have

Aq(n, 2k, k) >
qn − qk(qr − 1)− 1

qk − 1
.

Proof. Let r be the remainder obtained when k is divided into n, and define m = k + r.
By Lemma 4.4.5, we get a set X consisting of one m-dimensional subspace W of Fnq
and qn−qm

qk−1 subspaces of Fnq of dimension k, such that U ∩ V = {0} for all U, V ∈ X .
Define C to be the set of all k-dimensional subspaces of X together with an arbitrary
k-dimensional subspace of W 1. It follows that U ∩ V = {0} for every element U, V ∈ C,
which means that the minimum distance of C is 2k. Furthermore the size of this code C
is

qn − qm

qk − 1
+ 1 =

qn + qk − qm − 1

qk − 1
,

which gives us the lower bound of this theorem.

The code constructed in the above theorem is a generalisation of a spread code, which
we will define as a partial spread code.

Definition 5.1.3. A partial k-spread of Fnq is a subset S of Gq(n, k) such that
U ∩ V = {0} for any U, V ∈ S with U 6= V . A partial k-spread of Fnq is a q-ary net-
work code of length n, dimension k and minimum distance 2k. We will call such a code
a partial spread code . If a partial k-spread cannot be extended to a larger partial
k-spread, we call it a maximal partial k-spread.

This structure will be the topic of this last chapter. Section 5.2 is based on the paper of
Eisfeld and Storme ([14]) and Section 5.3 on the recent article of Gorla and Ravagnani
([21]).

From Theorem 5.1.2 we have a lower bound for partial spreads. In the following theorem,
an upper bound is given.

1In the proof of Theorem 11 in [17], the subspace W is defined as the k-dimensional vector space〈
(0, β0), (0, β1), . . . , (0, βk−1)

〉
instead of W :=

〈
(0, β0), (0, β1), . . . , (0, βm−1)

〉
in the proof of Lemma

4.4.5.
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Theorem 5.1.4. Let C ⊆ Gq(n, k) be a partial spread code. Denote by r the remainder
obtained dividing n by k. Then

|C| 6 qn − qr

qk − 1
.

Proof. From the definition of a partial spread code, we know that C is a set of sub-
spaces of dimension k with trivial pairwise intersections. This property implies that
|C| · (qk − 1) + 1 6 qn. Since k divides n− r, qn−r−1

qk−1 is an integer, so it follows that

|C| 6
⌊
qn − 1

qk − 1

⌋
=

⌊
qr(qn−r − 1)

qk − 1
+
qr − 1

qk − 1

⌋
=
qn − qr

qk − 1
.

5.2 (Partial) t-spreads in finite projective spaces

In the next section we describe the work of Gorla and Ravagnani ([21]), in which they
constructed a special partial spread code whose size attains the lower bound of Theorem
5.1.2. This construction can be related to the construction of partial spreads in projective
space, which we will examine in this section, based on [14].

Note that in this section we consider (partial) t-spreads in PG(d, q). Because of the
link between vector spaces and projective spaces, the relation of the parameters of the
different sections is k = t + 1 and n = d + 1. A t-spread is a set S of t-dimensional
subspaces of P = PG(d, q) which partitions P , i.e. every point of P is contained in
exactly one element of S. As observed in Subsection 4.2.1, a t-spread can only exist if
the number of points of a t-dimensional subspace divides the number of points of the

whole space. This means that qt+1−1
q−1 has to be a divisor of qd+1−1

q−1 and hence qd+1−1
qt+1−1 has

to be an integer, which holds if and only if (t + 1)|(d + 1). This necessary condition
is also sufficient, since we can construct a t-spread, whenever t + 1 divides d + 1. The
construction we present below, is in fact the same as the construction in Subsection 4.2.1.

An element of a t-spread can be seen as a projective space PG(t, q) or as a vector space
V (t+1, q). Furthermore, we have the congruence Fqt+1

∼= V (t+1, q), where the addition
is just as in Fqt+1 , but the only permitted multiplication is the multiplication with scalars
of Fq. We also have that P = PG(d, q) = V (d+ 1, q) ∼= Fqd+1 . Since t+ 1 divides d+ 1,
it follows that Fqt+1 ⊆ Fqd+1 . This implies that the field Fqt+1 is a (t + 1)-dimensional
subspace of V (d + 1, q) and hence a t-dimensional projective subspace of P . The same
holds for all cosets ω · Fqt+1 , with ω ∈ Fqd+1\{0}. The sets ω · Fqt+1\{0} form a partition
of Fqd+1\{0}, which leads to a t-spread of P .

This gives us the following equivalent result of Corollary 4.2.3.

Theorem 5.2.1. In PG(d, q), a t-spread exists if and only if t+ 1 divides d+ 1.

Consequently, if t + 1 does not divide d + 1, a t-spread of P = PG(d, q) does not exist.
Nevertheless, we can generalize this concept by examining sets of pairwise disjoint t-
dimensional subspaces of P , i.e. partial t-spreads . In particular, the question arises
which are the largest partial t-spreads of P . In Theorem 5.1.4 we already showed an
upper bound on the number of elements of a partial spread code. This corresponds to
the following theorem in the case of projective spaces.
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Theorem 5.2.2. Let d = h(t + 1) + r − 1, where 1 6 r 6 t, and let P = PG(d, q). A

partial t-spread S of P contains at most qr · qh(t+1)−1
qt+1−1 elements.

Proof. The number of points of P is qh(t+1)+r−1
q−1 = qr q

h(t+1)−1
q−1 + qr−1

q−1 , where the first term

is a multiple of qt+1−1
q−1 , i.e. the number of points of a t-dimensional subspace. This gives

us the upper bound of the theorem.

In what follows we want to see how close we can come to the bound of Theorem 5.2.2.
Therefore, we will give an example of a partial t-spread, due to Beutelspacher ([3]).

Lemma 5.2.3. Let U be an s-dimensional subspace of P = PG(s+t+1, q), where s > t.
Then there exists a set S of t-dimensional subspaces of P which do not intersect U such
that every point of P\U is contained in exactly one element of S.

Proof. Consider the projective space P ′ = PG(2s + 1, q) containing P . Since s + 1
divides 2s+ 1 + 1, we can construct an s-spread S ′ of P ′ which contains U (see e.g. the
construction in the beginning of this section where U is the t-dimensional subspace of P
associated with the field Fqt+1 of which we take all the cosets). For every element V of
S ′\{U}, it follows that V + P ⊆ P ′, so we have

dim(V ∩ P) = dim(V ) + dim(P)− dim(V + P) > s+ s+ t+ 1− (2s+ 1) = t.

Since U is disjoint to every element V ∈ S ′\{U}, the intersection cannot be larger. This
means that each element of S ′\{U} intersects P exactly in a t-dimensional subspace.
The set of these intersections is the set S we are looking for.

Theorem 5.2.4. Let U be an (r+t)-dimensional subspace of P = PG(h(t+1)+r−1, q),
where 1 6 r 6 t and h > 1. Then there is a set S of t-dimensional subspaces of P which
do not intersect U , such that every point of P\U is contained in exactly one element of
S.

Proof. Applying Lemma 5.2.3 for s = t + r, 2(t + 1) + r − 1, . . . , (h− 1)(t + 1) + r − 1,
gives us a set S of t-dimensional subspaces of P , which are mutually disjoint and for
which every point of P\U is covered by exactly one element of S.

Corollary 5.2.5. Let t, h > 1 and 1 6 r 6 t. In P = PG(h(t+ 1) + r−1, q) there exists

a partial t-spread S with |S| = qr · qh(t+1)−1
qt+1−1 − q

r + 1.

Proof. Take the set S ′ of t-dimensional subspaces of P as in Theorem 5.2.4. The number

of points covered by this set is qh(t+1)+r−1
q−1 − qt+r+1−1

q−1 = qh(t+1)+r−qt+r+1

q−1 . Dividing this by

the number of points of a t-dimensional subspace, i.e. qt+1−1
q−1 , gives us

qh(t+1)+r − qt+r+1

qt+1 − 1
= qr · q

h(t+1) − 1

qt+1 − 1
− qr.

Adding one t-dimensional subspace of U to S ′, gives us a partial spread S of size

|S| = qr · qh(t+1)−1
qt+1−1 − q

r + 1.
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The construction of Beutelspacher, explained above, is visualized in the following figure.
You can see this as a ‘partition in slices’. This technique is the basis of the construction
of the partial spread code Cq(k, n; p, p′) in Theorem 5.3.4.

PG(d, q)

[t]

[t]

...

[t]

. . .

[t]

...

[t]

[t]

...

[t]

[t]

. . .

PG((h− 1)(t+ 1) + r − 1, q)
PG(2(t+ 1) + r − 1, q)

PG(t+ r, q)

Figure 5.1: Visualisation of the construction from Corollary 5.2.5 of a partial spread

To end this section, we will prove2 an upper bound on the size of a partial t-spread of
PG(d, q). First we say something about the holes. A point P ∈ P is a hole of the partial
t-spread S if it is not contained in an element of S.

Lemma 5.2.6. Let S be a partial t-spread in P = PG(d, q), where d = h(t+ 1)− 1 + r,

1 6 r 6 t. Let |S| = qr · qh(t+1)−1
qt+1−1 − s. Then the number of holes is qr−1

q−1 + s · qt+1−1
q−1 and

the number of holes in a hyperplane is congruent to qr−1
q−1 + s · qt−1

q−1 (mod qt).

Proof. Since a partial spread S consists of |S| pairwise disjoint t-dimensional subspaces
and since the holes are the points of P not contained in S, the number of holes is exactly

|P| − |S| · q
t+1 − 1

q − 1
=
qh(t+1)+r − 1

q − 1
− qr · q

h(t+1) − 1

q − 1
+ s · q

t+1 − 1

q − 1

=
qr − 1

q − 1
+ s · q

t+1 − 1

q − 1
.

To prove the second part, let H be a hyperplane of P . Then an element V of S is
contained in H or intersects H in a (t − 1)-dimensional subspace. This means that

V intersects H either in qt+1−1
q−1 = qt−1

q−1 + qt or in qt−1
q−1 points, which is in any case

qt−1
q−1 (mod qt) points. Since

|S| = qr · q
h(t+1) − 1

qt+1 − 1
− s = qr · (1 + qt · q

h(t+1)−t − q
qt+1 − 1

)− s,

2This approach is based on the proof of Theorem 2.7 in [14].
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it follows that |S| ≡ qr − s (mod qt).

This implies that the number of points of H contained in an element of S is

qt − 1

q − 1
· |S| ≡ qt − 1

q − 1
· (qr − s) (mod qt).

Consequently, the number of holes in H is congruent to

|H| − qt − 1

q − 1
· (qr − s) =

qh(t+1)−1+r − 1

q − 1
− qr · q

t − 1

q − 1
+ s

qt − 1

q − 1

= qt · q
(h−1)(t+1)+r − qr

q − 1
+
qr − 1

q − 1
+ s · q

t − 1

q − 1

≡ qr − 1

q − 1
+ s · q

t − 1

q − 1
(mod qt).

Theorem 5.2.7. Let S be a partial t-spread in P = PG(d, q), where d = h(t+1)−1+r,

1 6 r 6 t. Let |S| = qr · qh(t+1)−1
qt+1−1 − s. Then

(i) s > q − 1,

(ii) s > qr−1
2
− q2r−t−1

5
.

Furthermore, there exists an example with s = qr − 1.

Proof. (i) First, we want to prove that s > q − 1.

Assume to the contrary that s 6 q − 2. Therefore,

qr − 1

q − 1
+ s · q

t − 1

q − 1
6
qr − 1

q − 1
+ (q − 2) · q

t − 1

q − 1
=
qr − 1

q − 1
+ qt − 1− qt − 1

q − 1
< qt,

and so, from Lemma 5.2.6, it follows that any hyperplane H contains at least qr−1
q−1 +s· qt−1

q−1
holes. Double counting of the incident pairs (H,P ), where H is a hyperplane of P and
P a hole, gives us the inequality(

qr − 1

q − 1
+ s · q

t+1 − 1

q − 1

)
· q

d − 1

q − 1
>
qd+1 − 1

q − 1
·
(
qr − 1

q − 1
+ s · q

t − 1

q − 1

)
which is equivalent to

s
[
(qt+1 − 1)(qd − 1)− (qt − 1)(qd+1 − 1)

]
> (qd+1 − 1)(qr − 1)− (qd − 1)(qr − 1)

⇔
s
[
qd(q − 1)− qt(q − 1)

]
> qd(q − 1)(qr − 1)

⇔
s(qd − qt) > qd(qr − 1).
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Since we assumed that s 6 q − 2, it follows that

qd+1 − 2qd − (q − 2)qt = (q − 2)(qd − qt) > s(qd − qt)
> qd(qr − 1) = qd+r − qd

> qd+r − 2qd

> qd+1 − 2qd − (q − 2)qt,

which gives a contradiction.

(ii) The proof of the second part will give us that s > qr−1
2
− q2r−t−1

5
.

If h = 0, then |S| = 0, and if h = 1, then |S| 6 1. Therefore, we can restrict ourselves to
the case h > 2. For i ∈ N, let λi be the number of hyperplanes with i holes. By counting
the number of hyperplanes on two different ways, it follows that∑

i

λi =
qd+1 − 1

q − 1
. (5.2.1)

Double counting of the pairs (H,P ), where H is a hyperplane of P and where P is a
hole incident with H, leads us to the identity∑

i

iλi =

(
qr − 1

q − 1
+ s

qt+1 − 1

q − 1

)
· q

d − 1

q − 1
. (5.2.2)

Furthermore, if we count the tuples (H,P1, P2), with a hyperplane H, two different holes
P1 and P2, such that P1 and P2 are contained in the hyperplane H, we get∑

i

i(i− 1)λi =

(
qr − 1

q − 1
+ s

qt+1 − 1

q − 1

)
·
(
qr − 1

q − 1
+ s

qt+1 − 1

q − 1
− 1

)
· q

d−1 − 1

q − 1
. (5.2.3)

Since we know from Lemma 5.2.6 that the number of holes in a hyperplane is qr−1
q−1 +s· qt−1

q−1

(mod qt), λi = 0 except for the cases when i = qr−1
q−1 + s · qt−1

q−1 + x · qt for a certain x ∈ Z.
This implies that∑

i

(
i− qr − 1

q − 1
− s · q

t − 1

q − 1

)
·
(
i− qr − 1

q − 1
− s · q

t − 1

q − 1
+ qt

)
λi > 0.

Indeed, if λi 6= 0, then the other two factors are just x · qt and (x + 1) · qt for a certain
x. So if the first factor is negative, then the second one is also negative or equals zero.
Or if the first one is positive, then the second factor is positive.

Inserting the values of
∑

i λi,
∑

i iλi and
∑

i i(i−1)λi, received from the identities (5.2.1),
(5.2.2) and (5.2.3), and some calculations later ([14]), the assertion is proved.

The example of the partial t-spread with parameter s = qr − 1 follows from Corollary
5.2.5.
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The previous theorem shows that Corollary 5.2.5 is sharp in the case r = 1. For r > 1,
this theorem closes half of the gap between Corollary 5.2.5 and Theorem 5.2.2. Further-
more, it was conjectured that s > qr − 1, so that there would be no examples of partial
spreads with a size larger than the lower bound of Theorem 5.1.2. This would mean
that in the case of a partial 2-spread S in PG(7, 2) (and so with the parameters t = 2,
h = 2, r = 2), |S| 6 33. However, in [15] El-Zanati et al. showed that there is a partial
3-spread in the finite vector space V (8, 2), which corresponds to a partial 2-spread in
PG(7, 2), of size 34. Then, the parameter s in Theorem 5.2.7 for this case is 2. Now the
question arises if it is possible that there exists a 3-spread of size 35. From Theorem
5.2.7 it follows that

s >
22 − 1

2
− 24−2−1

5
=

11

10
> 1,

so s > 2. Therefore, in this case, the bound of Theorem 5.2.7 is sharp and the example
of [15] has the largest size and is definitely a maximal partial 2-spread in PG(7, 2).

In the next section we will construct a partial spread code based on the construction of

Beutelspacher, of size qr · qh(t+1)−1
qt+1−1 − q

r + 1. But the example of El-Zanati et al. implies

that maybe we could use a larger partial 2-spread in PG(7, 2) and construct a larger
(n,M, 2k, k)-code. This would lower the upper bound of Corollary 5.3.9.

Nevertheless, it is still difficult to obtain a clear view on the structure of the partial
spread given in [15], or to generalize this for coding purposes. By a computer search,
done by Peter Vandendriessche, it is possible to give a geometrical interpretation of the
set of holes of this partial 2-spread in PG(7, 2) described in Example 2 in [15]. Since the
number of points in PG(7, 2) is 28 − 1 = 255 and every 2-dimensional subspace of the
partial spread consists of 7 points, the number of holes is 255− 7.34 = 17. In the figure
below, the following description of the 17 holes is visualised.

Figure 5.2: The set of holes for the maximal partial 2-spread of size 34 in PG(7, 2)
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Vandendriessche made a coordinatisation of PG(7, 2), where all points are of the form
(x0, . . . , x7) and ei are the points of the basis with coordinates xj = δij, with δij the
Kronecker delta. He found that all holes lie in the hyperplane X7 = 0, more specifically
the holes are the points of 2 3-spaces V1 = 〈e0, e1, e3, e4〉 and V2 = 〈e0, e1, e5, e6〉 and one
plane π3 = 〈e0, e1, e2〉 through the line L = 〈e0, e1〉, except for the 14 points of the two
planes π1 = 〈e0, e3, e4〉 and π2 = 〈e1, e5, e6〉 which lie respectively in V1 and V2.

Possibly, this example is just a ‘Spielerei’ and not very useful for decoding algorithms.
Certainly we do not have this problem with the partial spread code Cq(k, n; p, p′). In
the next section, we construct this specific partial spread code, based on the idea of the
construction of Corollary 5.2.5, and use the block structure of Cq(k, n; p, p′), which allows
us to produce an efficient decoding algorithm for partial spread codes.

Remark 5.2.8. In the case when t + 1 is not a divisor of d + 1, examining how many
mutually disjoint t-dimensional subspaces we can put in a d-dimensional projective space,
is a natural question. But also the question of the smallest number of t-dimensional
subspaces which cover the whole projective space, rises up. This leads us to the concept
of a t-cover. This is a set of t-dimensional subspaces of PG(d, q) which cover all of the
points of PG(d, q). A t-cover is called minimal when no proper subset of it is still a
t-cover. Taking again the article of Eisfeld and Storme ([14]), gives us a nice equivalence
between t-covers in projective spaces and q-covering designs Cq(n, k, 1), examined in e.g.
Subsection 4.4.1. For example, Proposition 2.1 in [14] and Theorem 4.4.7 are basically
the same. Although this subject is very interesting, we will not examine this further in
this dissertation.

5.3 The partial spread code Cq(k, n; p, p
′)

From the construction of Etzion and Vardy ([17]) used in Lemma 4.4.5 and Theorem
5.1.2, we obtain a partial spread code. The size of this code is

qn − qk(qr − 1)− 1

qk − 1
=
qn − qr

qk − 1
− qr + 1. (5.3.1)

This is also the size of the partial t-spread constructed in the previous section (see
Corollary 5.2.5). This construction can be related to another partial spread code, which
we will present in this section, based on the article [21] of Gorla and Ravagnani. The
advantage of this code is the ability to give an efficient decoding algorithm for these
partial spread codes. We will present the ideas of this procedure in Subsection 5.3.2
after we have explained the construction and some interesting properties of this partial
spread code, which will be denoted by Cq(k, n; p, p′).

5.3.1 Construction and properties of Cq(k, n; p, p′)

The vector spaces of the partial spread we will construct, are given as row spaces of
appropriate easy-computable matrices. For that, we introduce the following matrix.
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Definition 5.3.1. Let q be a prime power and let Fq be the finite field with q elements.

Choose a primitive monic polynomial p ∈ Fq[x] of degree k > 1 and write p =
∑k

i=0 pix
i.

Define the companion matrix of p by

M(p) :=


0 1 0 . . . 0
0 0 1 0
...

. . .
...

0 0 0 1
−p0 −p1 −p2 . . . −pk−1

 .

Now consider this situation and denote by P the companion matrix M(p), then the
following lemma holds, which is shown in Section 2.5 of [29].

Lemma 5.3.2. The Fq-algebra Fq[P ] is a finite field with qk elements.

Before we present the construction of the partial spread code in Theorem 5.3.4, we start
with an elementary lemma about vector spaces.

Lemma 5.3.3. Let V be a finite-dimensional vector space over a field F. Let D ⊆ V
be any subset, 〈D〉 the vector space spanned by the elements of this subset D, and set
d := dimF 〈D〉3. Choose a finite subset S ⊆ D. Then

dimF 〈D\S〉 > d− |S|.

Proof. Since D = (D\S) ∪ S, it follows that 〈D\S〉 + 〈S〉 ⊇ 〈(D\S) ∪ S〉 = 〈D〉. From
this, together with the Dimension theorem, we get

dimF 〈D\S〉+ dim 〈S〉 = dimF(〈D\S〉+ 〈S〉) + dimF(〈D\S〉 ∩ 〈S〉)
> dimF 〈D〉+ dimF(〈D\S〉 ∩ 〈S〉)
= d+ dimF(〈D\S〉 ∩ 〈S〉).

Since dimF(〈D\S〉 ∩ 〈S〉) > 0 and since dimF 〈S〉 6 |S| always holds, it follows that

dimF 〈D\S〉+ |S| > dimF 〈D\S〉+ dim 〈S〉 > d,

and so we can conclude that

dimF 〈D\S〉 > d− |S|.

Theorem 5.3.4. Consider the finite field Fq with q elements, q a prime power. Choose
integers 1 6 k < n and write n = hk + r with 0 6 r 6 k − 1. Assume h > 2. Let
p, p′ ∈ Fq[x] be two primitive monic polynomials of degree k and k + r respectively, and
let P := M(p), P ′ := M(p′) be their companion matrices. For any 1 6 i 6 h− 1 set

Mi(p, p
′) :={

[
0k · · · 0k Ik Ai+1 · · · Ah−1 A(k)

]
|

Ai+1, . . . , Ah−1 ∈ Fq[P ], A ∈ Fq[P ′]},
3For this lemma we emphasize the fact that we define the dimension over the field F. In most cases,

this is clear from the context and so, the subscript of the dimension will not be used.
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where 0k is the (k × k)-matrix with zero entries, which appears i− 1 times in Mi(p, p
′),

Ik the (k × k)-identity matrix, and A(k) denotes the last k rows of A.

The set

C :=
h−1⋃
i=1

{rowsp(M) : M ∈Mi(p, p
′)} ∪ {rowsp

[
0k · · · 0k 0k×r Ik

]
}

is a partial spread code in Fnq of dimension k. In particular, the minimum distance of C
is 2k.

Proof. We have to prove that C is a set of k-dimensional subspaces of Fnq , whose pair-
wise intersections are trivial. So first take two different matrices M1 ∈ Mi(p, p

′) and
M2 ∈Mj(p, p

′), with 1 6 i, j 6 h − 1. Define V1 := rowsp(M1) and V2 := rowsp(M2).
By definition, we have d(V1, V2) = 2k − 2 dim(V1 ∩ V2), from which it follows that
d(V1, V2) = 2k if and only if

rk

[
M1

M2

]
= 2k.

To prove this for every M1 6= M2, we have to look for a submatrix N of

[
M1

M2

]
, or of[

M2

M1

]
, of rank 2k. First, if i 6= j, it is possible to find either in

[
M1

M2

]
, or in

[
M2

M1

]
, a

submatrix of the form

N1 :=

[
Ik B
0k Ik

]
,

with B ∈ Fq[P ]. The rank of this matrix N1 is 2k. Now, consider the case where both
M1 and M2 are matrices of Mi(p, p

′) for a fixed i. Then either

N2 :=

[
Ik B1

Ik B2

]
, with B1 6= B2 ∈ Fq[P ],

or

N3 :=

[
Ik X(k)

Ik Y(k)

]
, with X 6= Y ∈ Fq[P ′],

will be a submatrix of

[
M1

M2

]
or

[
M2

M1

]
. The rank of N2 is equal to the rank of the matrix

[
Ik B1

0k B2 −B1

]
.

Since B1 6= B2 and since we know from Lemma 5.3.2, that Fq[P ] is a field, B1−B2 is an
invertible matrix. Therefore, rk(N2) = 2k.

In order to study the last case of the matrix N3, consider the (2(k+r)×2(k+r))-matrix

H :=

[
Ik+r X
Ik+r Y

]
.
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Since X 6= Y , the same arguments as above lead us again to the fact that

det

[
Ik+r X
0k+r Y −X

]
= det(X − Y ) 6= 0,

so rk(H) = 2(k+ r). Delete from H the rows from one to r and from k+ r+ 1 to k+ 2r.
We obtain a 2k × 2(k + r) matrix, which we denote by H̃. The rows of this matrix H̃
are exactly the rows of N3, except for the r extra zeroes in the beginning. In particular,
rk(H̃) = rk(N3). By Lemma 5.3.3, we get rk(H̃) > 2(k + r) − 2r = 2k, which implies
that the rank of N3 is also the required rank 2k.

In order to complete the proof, we take the matrix M1 ∈ Mi(p, p
′) and set M2 :=[

0k · · · 0k 0k×r Ik
]
. Also in this case, it follows that

rk

[
M1

M2

]
= 2k.

Remark 5.3.5. We already mentioned that the construction of the partial spread code
of Theorem 5.3.4 is based on the ideas of the construction of Beutelspacher in Theorem
5.2.4 and Corollary 5.2.5, visualised in Figure 5.1 with the ‘slices’. This connection can
be seen in the following way. First, note that the parameter k in the case of vector spaces
in this section corresponds to the parameter t + 1 used in Section 5.2 and parameter h
is the same. The element rowsp

[
0k · · · 0k 0k×r Ik

]
of the partial spread code C of

Theorem 5.3.4 corresponds to the special element of the partial t-spread S in the fixed
(r+ t)-dimensional subspace of P , i.e. the element [t] in the projective space PG(t+r, q)
in Figure 5.1. Furthermore, if we take another element of C, this element is the rowspace
of a matrix M ∈Mi(p, p

′) for a fixed i, so M is of the form[
0k · · · 0k Ik Ai+1 · · · Ah−1 A(k)

]
,

with Ai+1, . . . , Ah−1 ∈ Fq[P ], A ∈ Fq[P ′]. We associate such an element with an element
of a spread obtained when we apply Lemma 5.2.3 for parameter s = (h− i)(t+ 1) + r − 1,
as we did in the proof of Theorem 5.2.4. This is an element in the projective space
PG((h− i+ 1)(t+ 1) + r − 1, q) (see also Figure 5.1).

Definition 5.3.6. The partial spread code C defined in the statement of Theorem 5.3.4
will be denoted by CCC q(k,n;p, p′). Since for any (n,M, d)-code C in projective space,
the complementary code C⊥ is also an (n,M, d)-code, as noted in Subsection 2.2.3, we
may assume k 6 n

2
.

In the next example, we construct such a partial spread code Cq(k, n; p, p′) of length
n = 7 and dimension k = 2 over the binary field F2.

Example 5.3.7. First observe that, with the parameters (q, n, k) = (2, 7, 2), it follows
that n ≡ 1 (mod k). Therefore, in the notation of Theorem 5.3.4, r = 1 and h = 3.
Take the primitive monic polynomials p(x) := x2 + x + 1, p′(x) := x3 + x + 1 ∈ F2[x].
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Theorem 5.3.4 assures that from these polynomials, we can construct a partial spread
code C2(2, 7; p, p′). From Definition 5.3.1, the companion matrices of p and p′ are

P := M(p) =

[
0 1
1 1

]
and P ′ := M(p′) =

0 1 0
0 0 1
1 1 0

 .
This implies that the elements of C2(2, 7;x2 + x+ 1, x3 + x+ 1) are the row spaces of all
the matrices in the following forms:[

1 0
0 1

A1 A(2)

]
,

[
0 0 1 0
0 0 0 1

B(2)

]
,

[
0 0 0 0 0 1 0
0 0 0 0 0 0 1

]
,

where A1 is any matrix in Fq[P ] and A(2), B(2) denote the last two rows of any arbitrary
A,B ∈ Fq[P ′].

From Lemma 5.3.2 and Theorem 5.3.4, it follows that the number of elements of the
code constructed in this example is 22 · 23 + 23 + 1 = 41. The size of a partial spread
code Cq(k, n; p, p′) will be generalized in the following theorem. This will be indeed the
size (5.3.1), suggested in the beginning of this section.

Theorem 5.3.8. Let C be a partial spread code Cq(k, n; p, p′). Then the cardinality of C
is

|C| = qn − qr

qk − 1
− qr + 1.

Proof. Note that we follow the notation of Theorem 5.3.4. The matrices in the statement
of Theorem 5.3.4 are given in row-reduced echelon form, which is canonical (see e.g.
Section 2.2 of [32]). Furthermore, we will prove that for two different matrices X, Y ∈
Fq[P ′], also the matrices of the last k rows, i.e. X(k) and Y(k), are different. Indeed,
assume to the contrary that X(k) = Y(k) for arbitrary matrices X, Y ∈ Fq[P ′], X 6= Y .
We have

rk

[
Ik+r X
Ik+r Y

]
= 2(k + r).

The same technique as in the proof of Theorem 5.3.4 with the matrix H, where we
deleted from the matrix the rows from one to r and from k+ r+ 1 to k+ 2r, shows that

rk

[
Ik X(k)

Ik Y(k)

]
= 2k.

But since X(k) = Y(k), this is a contradiction, so it follows that X = Y . By Lemma 5.3.2

and since the sum of the first h− 1 terms of a geometric series is
∑h−2

i=0 a
i = ah−1−1

a−1 , the
size of C can be computed, as

|C| = qk+r
h−2∑
i=0

qki + 1 = qk+r
qn−r−k − 1

qk − 1
+ 1 =

qn − qr

qk − 1
− qr + 1.

Combining Theorem 5.1.4 and Theorem 5.3.8, gives us the following corollary.
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Corollary 5.3.9. Let C be a partial spread code Cq(k, n; p, p′) and let r be the remainder
obtained dividing n by k. Then

Aq(n, 2k, k)− |C| 6 qr − 1.

If r = 1, Theorem 5.2.7 implies that this bound is sharp. Nevertheless, for the case
of n = 8 and k = 3 (and therefore r = 2), this is not true. Indeed, it follows from
the example of El-Zanati et al. ([15]), discussed at the end of Subsection 5.2, that
Aq(8, 6, 3) = 34, and therefore Aq(n, 2k, k)− |C| = 34− 33 = 1 < 22 − 1.

When constructing partial spread codes, it is always the goal to achieve a spread code
with a size as large as possible. This means that we want to extend a given partial spread
code. When this is not possible anymore, we call this partial spread code maximal (see
Definition 5.1.3). From Corollary 5.3.9, it follows that there is still room for improvement,
if r > 1. Nevertheless, the following theorem ensures that Cq(k, n; p, p′) cannot be
improved as an (n,M, 2k, k)-code by adding new codewords.

Theorem 5.3.10. Let C be a partial spread code Cq(k, n; p, p′). Then C is a maximal
code contained in Gq(n, k) of minimum distance 2k, with respect to inclusion.

Proof. We have to prove that there is no partial k-spread C ′ in Fnq such that C ⊆ C ′ and
|C| < |C ′|. Write, as in Theorem 5.3.4, n = hk + r with 0 6 r < k and we can assure
that h > 2, because of the assumption in Definition 5.3.6 that k 6 n

2
. Define the partial

k-spread
C := C\{rowsp

[
0k · · · 0k 0k×r Ik

]
}.

Assume, by contradiction, that there exists a partial k-spread C ′ in Fnq such that C ′ ⊇ C
and |C ′| > |C|+2. Denote by S the set of vectors ∪C\{0}. From Theorem 5.3.8 we know
that |C| = qn−qr

qk−1 − q
r and hence,

|S| = (qk − 1) · |C| = qn − qk+r.

The set X := {x ∈ Fnq |xi = 0 for any i = 1, . . . , (h − 1)k} is a (k + r)-dimensional
subspace of Fnq . Since one of the (k × k)-submatrices of an element of Mi(p, p

′), with
1 6 i 6 h− 1, is always a (k × k)-identity matrix, every vector of S has always at least
one nonzero coordinate xi, 1 6 i 6 (h− 1)k. This implies the inclusion X ⊆ Fnq \S and
therefore,

|Fnq \S| = qn − (qn − qk+r) = qk+r = |X|.

Consequently, X = Fnq \S and so Fnq is the union of the disjoint sets X and S. For every

s ∈ S, there exists exactly one subspace Vs ∈ C such that s ∈ Vs. Therefore, since
C ′ ⊇ C ⊇ C, with |C ′| > |C| + 2, there are at least two codewords V1 and V2 of C, such
that V1 ∩ V2 = {0} and V1, V2 ⊆ X. Since X is a vector space containing both V1 and
V2, we have the inclusion V1 + V2 ⊆ X. This implies the inequality

dim(V1) + dim(V2)− dim(V1 ∩ V2) 6 dim(X),

which leads to the contradiction 2k 6 k + r.
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Theorem 5.3.10 tells us that we cannot extend Cq(k, n; p, p′) to a larger partial spread
code. Although we already noted that the counter example of El-Zanati et al. ([15])
shows that the bound in Corollary 5.3.9 is not always sharp, it is hard to find a use-
ful interpretation of the elements of this specific partial spread seen as a rowspace of
some matrices with a block structure. Therefore, one has doubts about the applications
and generalisations for decoding purpose. Nonetheless, the case of the partial spread
codes Cq(k, n; p, p′) is very suitable for this. In the last subsection of this thesis, we ex-
plain some key elements to a successful decoding algorithm for this partial spread codes
Cq(k, n; p, p′).

5.3.2 Towards a decoding algorithm for partial spread codes

First we start this subsection with an investigation of the block structure of the partial
spread code defined in Theorem 5.3.4.

Theorem 5.3.11. Let C be a partial spread code Cq(k, n; p, p′) and let V ∈ C be a
codeword, say

V := rowsp
[
S1 · · · Sh−1 S

]
,

where the matrices Si are (k × k)-matrices and where S is a (k × (k + r))-matrix. Let
X ⊆ Fnq be a t-dimensional vector subspace defined by

X := rowsp
[
M1 · · · Mh−1 M

]
,

where the matrices Mi are (k × k)-matrices and M is a (k × (k + r))-matrix. If
d(V,X) < k, then X decodes to V . Moreover, for any 1 6 i 6 h − 1, the following
two facts are equivalent:

(i) Si = 0k,

(ii) rk(Mi) 6 t−1
2

.

Proof. From Theorem 5.3.4 we know that the minimum distance of C is 2k. If d(V,X) < k,
a minimum-distance decoder will decode the subspace X as the codeword V (see also
Subsection 2.2.4). Indeed, if the minimum-distance decoder would return another code-
word U ∈ C, then d(U,X) 6 d(V,X) < k and hence, applying the triangle inequality,

d(U, V ) 6 d(U,X) + d(X, V ) < 2k,

which gives a contradiction.

(i)⇒(ii): We will first prove that, for an arbitrary i, 1 6 i 6 h − 1, if Si = 0k, then
rk(Mi) 6 t−1

2
.

Without loss of generality, we assume that the matrix
[
S1 · · · Sh−1 S

]
is in row-

reduced echelon form. We assume that Si = 0k. By the definition of C, then

(a) either there exists an index j, 1 6 j 6 h− 1 with j 6= i, such that Sj = Ik, or

(b) Sj = 0k for any 1 6 j 6 h− 1.
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In the first case (a), define the matrix Mij by

Mij :=

[
0k Ik
Mi Mj

]
.

The rank of this matrix is upper bounded by dim(V + X). Since d(V,X) < k, by
definition, dim(V ) + dim(X)− 2 dim(V ∩X) < k or equivalently dim(V ∩X) > t

2
. This

implies that

rk(Mij) 6 dim(V +X) = k + t− dim(V ∩X) < k +
t

2
. (5.3.2)

Therefore, it follows that

rk(Mij) = k + rk(Mi) < k +
t

2
,

and hence,

rk(Mi) 6
t− 1

2
.

In the latter case (b), by the definition of C, we have V = rowsp
[
0k · · · 0k 0k×r Ik

]
.

We will use the same technique as above. Define the matrix

Mij :=

[
0k 0k×rIk
Mi M

]
.

Again, we have the inequality (5.3.2), and so we get

rk(Mij) = k + rk(Mi) < k +
t

2
,

from which it follows also that rk(Mi) 6 t−1
2

.

(ii)⇒(i): Assuming that rk(Mi) 6 t−1
2

, we will now prove that Si = 0k.

If we assume, by contradiction, that Si 6= 0k then, by the definition of C and Lemma
5.3.2, all the nonzero matrices of Fq[P ] are invertible, and therefore rk(Si) = k. Denote
by π : Fnq → Fkq the projection on the coordinates ki + 1, ki + 2, . . . , k(i + 1). Since
π(V ) = rowsp(Si) and rk(Si) = k, it follows that π|V is surjective. Since dim(V ) = k,
we get that π|V is also injective. The inclusion π(V ∩ X) ⊆ π(V ) ∩ π(X) follows from
the fact that if we take an element of π(V ∩X), this is the projection of an element y,
such that y ∈ V and y ∈ X, and so π(y) is an element of π(V ) and of π(X). Therefore,
we have dim(π(V ∩X)) 6 dim(π(V ) ∩ π(X)) and so

dim(V ∩X) = dim(π(V ∩X)) 6 dim(π(V ) ∩ π(X)) 6 dim(π(X)) = rk(Mi) 6
t− 1

2
.

This implies that dim(V ) + dim(X)− 2 dim(V ∩X) > k+ t− (t− 1), which contradicts
the assumption that d(V,X) < k.

The previous theorem has the following useful interpretation. Suppose we use a partial
spread code C := Cq(k, n; p, p′) for random network coding and suppose that we receive a
t-dimensional vector space X := rowsp

[
M1 · · · Mh−1 M

]
. Assume that there exists
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a codeword V ∈ C such that d(V,X) < k, then the minimum-distance decoder will re-
turn V , as stated in Theorem 5.3.11. If rk(Mi) 6 t−1

2
for any i, 1 6 i 6 h− 1, then V =

rowsp
[
0k · · · 0k 0k×r Ik

]
. Otherwise, denote by i the smallest integer 1 6 i 6 h−1,

such that rk(Mi) >
t−1
2

. Then there exist unique matrices Ai+1, . . . , Ah−1 ∈ Fq[P ] and a
unique matrixA ∈ Fq[P ′] such that V = rowsp

[
0k · · · 0k Ik Ai+1 · · · Ah−1 A(k)

]
,

where the identity matrix Ik is the ith (k × k)-block. To find these block matrices, we
will need a decoding algorithm. To reduce the complexity of the algorithm, the following
theorem is very useful.

Theorem 5.3.12. With the setting described above and assuming that the codeword
V 6= rowsp

[
0k · · · 0k 0k×r Ik

]
, then, for any i+ 1 6 j 6 h− 1, we have

d(rowsp
[
Ik Aj

]
, rowsp

[
Mi Mj

]
) < k

and
d(rowsp

[
Ik A(k)

]
, rowsp

[
Mi M

]
) < k.

Proof. Fix an integer j such that i+ 1 6 j 6 h− 1 and denote this time by π : Fnq → F2k
q

the projection on the coordinates ki+ 1, ki+ 2, . . . , k(i+ 1), kj + 1, kj + 2, . . . , k(j + 1).
Since V = rowsp

[
0k · · · 0k Ik Ai+1 · · · Ah−1 A(k)

]
, where the identity matrix

Ik is the i-th (k × k)-block, it follows that π(V ) = rowsp
[
Ik Aj

]
. In particular,

dim(imπ|V ) = rk(π|V ) = k. From the identity dim(imπ|V ) + dim(ker π|V ) = dim(V ), it
follows that dim(ker π|V ) = 0, which means that π|V is injective. Therefore, we have
dim(π(V ∩X)) = dim(V ∩X). Furthermore, π(X) = rowsp

[
Mi Mj

]
and we have the

inclusion π(V ∩X) ⊆ π(V ) ∩ π(X), so dim(π(V ∩X)) 6 dim(π(V ) ∩ π(X)). Hence,

d(rowsp
[
Ik Aj

]
, rowsp

[
Mi Mj

]
) = d(π(V ), π(X))

= dim(π(V )) + dim(π(X))− 2 dim(π(V ) ∩ π(X))

6 k + t− 2 dim(π(V ∩X))

= k + t− 2 dim(V ∩X)

= d(V,X)

< k.

Doing an analogous proof with the function π : Fnq → F2k+r
q as the projection on the

coordinates ki+1, ki+2, . . . , k(i+1), k(h−1)+1, k(h−1)+2, . . . , kh, kh+1, . . . , kh+r,
will give us that d(rowsp

[
Ik A(k)

]
, rowsp

[
Mi M

]
) < k.

This theorem gives us the key to reduce decoding partial spread codes Cq(k, n; p, p′)
to decoding such partial spread codes for the cases n = 2k and n = 2k + r, with
1 6 r 6 h − 1. Moreover, the theorem allows us to parallellize the computation, which
will decrease the decoding complexity to the case n = 2k + r. So, in order to decode
a partial spread code Cq(k, n; p, p′), we may restrict to decoding partial spread codes of
the form Cq(k, 2k + r; p, p′), with 0 6 r 6 k − 1.

Remark 5.3.13. In the construction of Theorem 5.3.4 for a particular partial spread
code Cq(k, 2k + r, p, p′) with 0 6 r 6 k − 1, we do not need the companion matrix of p.
Therefore, we write CCC q(k,2k+ r;p′).
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For the case r = 0, we rely on the literature and do not work this out in this dissertation.
For instance, in [28], there are decoding algorithms of the Reed-Solomon like codes and
in [38] a decoding algorithm for Desarguesian spread codes is represented. Suppose that
we have a t-dimensional row space X of a (k × 2k)-matrix

[
M1 M2

]
, assuming that

X is decodable, i.e. assuming that there exists a codeword V ∈ Cq(k, 2k; p) such that
d(V,X) < k. If rk(M1) 6 t−1

2
, then V =

[
0k Ik

]
(see the interpretation of Theorem

5.3.11). Otherwise, we can use a decoding algorithm for e.g. Reed-Solomon like codes
on Cq(k, 2k; p)\{rowsp

[
0k Ik

]
}, which returns a matrix in row-reduced form whose row

space is the unique codeword V ∈ Cq(k, 2k; p) for which d(V,X) < k. This discussion
leads to the following algorithm.

Data: A decodable t-dimensional row space X of a (k × 2k)-matrix
[
M1 M2

]
Result: The unique V ∈ Cq(k, 2k; p) such that d(V,X) < k, given as a matrix in

row-reduced echelon form whose row space is V ;
if rk(M1) 6 t−1

2
then

V = rowsp
[
0k Ik

]
;

else
Use a decoding algorithm for Reed-Solomon like codes on
Cq(k, 2k; p)\{rowsp

[
0k Ik

]
};

end
Algorithm 1: Decoding a Cq(k, 2k; p) code

Now we focus on a decoding algorithm for partial spread codes of the form Cq(k, 2k+r; p),
with 1 6 r 6 k − 1. In the following theorem, we will construct a canonical embedding
of a partial spread code Cq(k, 2k+r; p) into the spread code Cq(k+r, 2(k+r); p). In fact,
this can be interpretated as a reverse construction of the construction of Beutelspacher in
Corollary 5.2.5, as we did in Remark 5.3.5. From this embedding, a decoding algorithm
for Cq(k+r, 2(k+r); p) (see Algorithm 1) will give a decoding algorithm for Cq(k, 2k+r; p).

Theorem 5.3.14. Let C be a partial spread code Cq(k, 2k + r; p) with 1 6 r 6 k − 1.
Denote by X the t-dimensional vector space rowsp

[
M1 M

]
in F2k+r

q , where M1 is a
(k × k)-matrix and M a (k × (k + r))-matrix. Assume the existence of a matrix A ∈
Fq[P ] such that d(rowsp

[
Ik A(k)

]
, rowsp

[
M1 M

]
) < k. Now define the following two

((k + r)× (k + r))-matrices:

M1 :=

[
0r 0r×k

0k×r M1

]
and M :=

[
0r×(k+r)
M

]
.

Then
d(rowsp

[
Ik+r A

]
, rowsp

[
M1 M

]
) < k + r.

Proof. Set V := rowsp
[
Ik A(k)

]
and observe that

d(V,X) = dim(V ) + dim(X)− 2 dim(V ∩X) < k

is equivalent to the fact that d(V ∩X) > t
2
. Now define the following vector spaces:

V := rowsp
[
Ik+r A

]
and X :=

[
M1 M

]
.

94



By construction, dim(X) = dim(X) = t and dim(V ∩X) > dim(V ∩X). Therefore, it
follows that

d(V ,X) = dim(V ) + dim(X)− 2 dim(V ∩X)

= k + r + t− 2 dim(V ∩X)

6 k + r + t− 2 dim(V ∩X)

< k + r + t− 2 · t
2

= k + r.

The previous theorem has a useful application. In fact, it is the key to success for a
decoding procedure for a partial spread code Cq(k, 2k + r; p), with 1 6 r 6 k − 1, using
a decoding algorithm for Cq(k + r, 2(k + r); p). We will discuss this briefly below.

With the conditions of Theorem 5.3.14, assume X := rowsp
[
M1 M

]
is received. If

rk(M1) 6 t−1
2

then, again because of Theorem 5.3.11, V =
[
0k 0k×r Ik

]
will be the

matrix of the corresponding codeword of Cq(k, 2k + r; p) returned by the decoding al-
gorithm. Otherwise, we may construct the matrices M1 and M as described in Theo-
rem 5.3.14 and obtain the vector space X :=

[
M1 M

]
. The minimum distance of the

spread code Cq(k + r, 2(k + r); p) is 2(k + r). By Theorem 5.3.14, if X decodes to
V := rowsp

[
Ik A(k)

]
in Cq(k, 2k + r; p), then X decodes to V := rowsp

[
Ik+r A

]
in

Cq(k+ r, 2(k+ r); p). Using the procedure4 explained in Algorithm 1 for the spread code
Cq(k+ r, 2(k+ r); p), applied to X, it will produce

[
Ik+r A

]
. Finally, V is the rowspace

of the matrix obtained by deleting the first r rows and the first r columns of
[
Ik+r A

]
.

We summarize this procedure in the following algorithm.

Data: A decodable t-dimensional row space X of a (k × 2k + r)-matrix
[
M1 M

]
Result: The unique V ∈ Cq(k, 2k; p) such that d(V,X) < k, given as a matrix in

row-reduced echelon form whose row space is V ;
if rk(M1) 6 t−1

2
then

V = rowsp
[
0k 0k×r Ik

]
;

else
Construct the matrix

[
M1 M

]
as explained in Theorem 5.3.14;

Use Algorithm 1 with Cq(k + r, 2(k + r); p) on
[
M1 M

]
;

Delete the first r rows and the first r columns of the output;

end
Algorithm 2: Decoding a Cq(k, 2k + r; p) code, with 1 6 r 6 k − 1

4It is of course allowed to use any other decoding algorithm for spread codes.
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Appendix Nederlandstalige samenvatting

Ongeveer een jaar geleden ging ik te rade bij Prof. Dr. Leo Storme voor een mogelijk
onderwerp voor mijn masterproef. Hierbij ging mijn voorkeur vooral uit naar iets in de
codeertheorie of meetkunde, en nog het liefst een combinatie van beide. Hij stelde me
voor om het artikel van Kötter and Kschischang [28] over random network coding eens
door te nemen. In dit bekroonde artikel wordt een netwerk beschouwd waarbij we de
informatie niet halen uit de vectoren die worden doorgestuurd, maar waarbij we kijken
naar de vectorruimten die deze vectoren opspannen. Op die manier zullen alle ontvangers
meer informatie van alle verzenders kunnen ontvangen. Dit zal leiden tot een nieuw soort
codeertheorie, gebruikmakende van de zogenaamde subspace distance. Dit artikel heeft
een enorme stimulans gegeven aan het onderzoek rond random network coding en heeft
ook mij kunnen overtuigen om mij hierin te verdiepen.

Random network coding, ook netwerk codering genoemd, heeft ook vele toepassingen in
communicatienetwerken zoals het Internet, draadloze communicatiesystemen en cloud
computing, en er zijn wereldwijd al vele werkgroepen die hiermee bezig zijn. Hier-
bij vermeld ik graag COST Action IC1104 (zie [9] of [10]), die een onderzoeksnetwerk
over random network coding and designs over Fq hebben opgericht om met experten uit
domeinen zoals zuivere en toegepaste wiskunde, computerwetenschappen en ingenieurs-
wetenschappen, samen hierop te werken. Zo organiseerden zij in februari een eerste
Europese trainingsschool over netwerk codering, waarbij ik het geluk had om hieraan te
mogen deelnemen. Zo konden de interessante voordrachten en nuttige praktijksessies met
experten uit dit vakgebied zoals Kschischang en Etzion, mij een beter en breder beeld
geven over de mogelijkheden van dit onderwerp, en vooral veel motivatie en inspiratie
om hiermee door te gaan.

Het resultaat van mijn ontdekkingstocht in een stukje van de wondere wereld van netwerk
codering en q-designs schreef ik neer in deze thesis, waarvan ik nu kort de verschillende
hoofdstukken zal toelichten.

In het eerste hoofdstuk Preliminaries worden alle belangrijke begrippen gëıntroduceerd
die nodig zijn voor het vervolg van de masterproef. Het doel van de inleiding is ook
om later het verband te kunnen leggen met de begrippen, stellingen en bewijzen uit de
klassieke codeertheorie, designtheorie en grafentheorie. Veel nieuwe zaken zijn namelijk
q-analogons, waarbij de klassieke concepten verkregen worden uit de nieuwe door het
nemen van de limiet voor q → 1.

Bij het tweede hoofdstuk Coding for errors and erasures in random network coding gaan
we van start met een algemene beschrijving van een netwerk, lineaire network codering,
enzomeer. Hierbij vertrekken we van het idee van het Butterfly network en beschouwen
we een kanaal waarbij de in- en output telkens deelruimten zijn van een overkoepelende
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vectorruimte. Hierbij definiëren we een geschikte metriek en andere basisbegrippen. Zo
komen we tot het begrip van een (n,M, d)-code in de projectieve ruimte. Ondanks
deze naam, werken we echter voornamelijk met vectorruimten in plaats van projectieve
ruimten. Het is verder niet onnatuurlijk om een speciale groep van codes te beschouwen,
i.e. constante-dimensie codes, (n,M, d)-codes waarbij elk codewoord dezelfde dimensie
k heeft en die leven in de Grassmanniaan Gq(n, k). Ten slotte onderzoeken we in welke
mate random network codes error - en erasure-verbeterend zijn, i.e. in welke mate ze
fouten en blanco’s kunnen opvangen.

In het derde hoofdstuk over Bounds on codes in random network coding beschouwen
we het ‘hoofdprobleem van de codeertheorie’ en gaan we op zoek naar de maximale
waarde voor het aantal codewoorden in een n-dimensionale ruimte en met minimumaf-
stand d. Daarbij is het natuurlijk om op zoek te gaan naar grenzen voor deze waarden.
Vooreerst beschouwen we de grenzen voor constante-dimensie codes. Hierbij geven we
het q-analogon van bijvoorbeeld de bolpakkingsgrens, bolbedekkingsgrens en Singleton
grens. Daarnaast komen ook nog andere (betere) grenzen aan bod en beschouwen we
kort het geval voor grenzen in het algemene geval van (n,M, d)-codes. Ook wordt in de
laatste sectie uitvoerig ingegaan op het niet-bestaan van niet-triviale perfecte codes in
de Grassmanniaan en in de projectieve ruimte.

Sterk gerelateerd met codes zijn designs. Daarom definiëren we in het vierde hoofd-
stuk Designs over Fq covering designs Cq(n, k, t), Turán designs Tq(n, k, t) en Steiner
structuren Sq(t, k, n) en bespreken we hun bestaan en de grenzen op hun grootte voor
verschillende parameters. Aangezien Steiner structuren optimale covering designs zijn,
krijgen zij de meeste aandacht. Hierbij bespreken we het recente en belangrijke resultaat
van [5] over het bestaan van Steiner structuren S2(2, 3, 13) en bijgevolg het bestaan van
Steiner systemen S(3, 8, 8192).

In het laatste hoofdstuk Partial spreads and partial spread codes in random network
coding worden (partiële) spreads en (partiële) spread codes besproken in de context
van codeertheorie, designtheorie en projectieve meetkunde. Zo zal de constructie van
Beutelspacher van partiële spreads in een eindige projectieve ruimte leiden tot een
interessante partiële spread code Cq(k, n; p, p′). Hiervan zullen we de constructie en
eigenschappen bespreken en dit zal ons leiden tot een decodeeralgoritme voor partiële
spread codes. Daarnaast beschouwen we een ander voorbeeld van een partiële spread,
die vanuit codeertheoretisch standpunt waarschijnlijk minder geschikt is, maar wiens
grootte groter is dan de corresponderende partiële spread volgens de constructie van
Beutelspacher. Hiervan zullen we, dankzij een computerzoektocht van Peter Vanden-
driessche, een meetkundige beschrijving geven van de bijhorende verzameling gaten.

Maar uiteraard is dit nog maar een begin. Er zijn nog steeds grenzen die verbeterd
moeten worden, van vele klassieke concepten kunnen er nog q-analogons beschouwd wor-
den en misschien vindt men andere constructies voor partiële spreads of nieuwe Steiner
structuren. . . Ik hoop dat u door het lezen van dit werk de smaak te pakken heeft
gekregen om over dit fascinerende onderwerp nog meer informatie te gaan vergaren en
mogelijks zelfs hierover onderzoek naar te verrichten.

Door deze masterproef beschikbaar te maken voor het COST project, wil ik graag bij-
dragen tot een verdere ontwikkeling van random network coding and designs over Fq.
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4(2–3):247–257, 1984.

[42] S.-T. Xia and F.-W. Fu. Johnson type bounds on constant dimension codes. Designs,
Codes and Cryptography, 50(2):163–172, 2009.

100

http://en.wikipedia.org

	Preface
	Permission for usage
	Acknowlegements
	1 Preliminaries
	1.1 Coding theory
	1.1.1 Error-correcting codes and the Hamming distance
	1.1.2 Linear codes and the Hamming codes
	1.1.3 Bounds on codes in the Hamming space
	1.1.3.1 Sphere-packing bound and sphere-covering bound
	1.1.3.2 Singleton bound
	1.1.3.3 Johnson bounds

	1.1.4 Insertion-and-deletion correcting codes and the Levenshtein distance

	1.2 Designs
	1.3 Graph theory
	1.3.1 Some basic concepts
	1.3.2 Association schemes and related graphs

	1.4 q-analogues

	2 Coding for errors and erasures in random network coding
	2.1 Random network coding
	2.1.1 General idea
	2.1.2 Butterfly network
	2.1.3 Random linear network coding
	2.1.4 Errors and erasures
	2.1.5 Operator channel

	2.2 Coding for operator channels
	2.2.1 Metric
	2.2.2 Codes
	2.2.3 Constant-dimension codes
	2.2.4 Error and erasure correction


	3 Bounds on codes in random network coding
	3.1 Bounds on constant-dimension codes
	3.1.1 Sphere-packing bound and sphere-covering bound
	3.1.2 Singleton bound
	3.1.3 Some other bounds
	3.1.4 Johnson bounds

	3.2 Bounds on codes in projective space
	3.3 Perfect codes
	3.3.1 Nonexistence of nontrivial perfect codes in Gq(n,k)
	3.3.2 Nonexistence of nontrivial perfect codes in Pq(n)


	4 Designs over Fq
	4.1 Covering designs, Steiner structures and Turán designs
	4.2 On the existence of Steiner structures and Steiner systems
	4.2.1 On the existence of nontrivial Steiner structures
	4.2.2 Deriving Steiner systems from Steiner structures

	4.3 On the existence of Steiner structures S2(2,3,13) and Steiner systems S(3,8,8192)
	4.3.1 Kramer-Mesner method
	4.3.2 Singer cycle
	4.3.3 Construction of S2(2,3,13)

	4.4 Bounds on q-covering numbers
	4.4.1 The q-covering numbers Cq(n,k,1) and Cq(n,n-1,t)
	4.4.2 An upper bound on q-covering numbers
	4.4.3 Schönheim bound


	5 Partial spreads and partial spread codes in random network coding
	5.1 Spread codes and partial spread codes
	5.2 (Partial) t-spreads in finite projective spaces
	5.3 The partial spread code Cq(k,n;p,p')
	5.3.1 Construction and properties of Cq(k,n;p,p')
	5.3.2 Towards a decoding algorithm for partial spread codes


	Appendix
	Inhoudsopgave

	Bibliography

