An Algebraic Approach to Physical-Layer Network Coding

Frank R. Kschischang

University of Toronto, Canada

joint work with:

Chen Feng, University of Toronto, Canada Roberto W. Nóbrega, Federal University of Santa Catarina, Brazil Danilo Silva, Federal University of Santa Catarina, Brazil

> April 18, 2013 WCC, Bergen, Norway

Finite-Field Matrix Channels

Packet Network

Random Linear Network Coding

- Transmitter injects packets: vectors from F^m_q, the rows of a matrix X
- Intermediate nodes forward random \mathbb{F}_q -linear combinations of packets
- Errors may also be injected, which randomly mix with the legitimate packets
- (Each) **receiver** gathers as many packets as possible, forming the rows of matrix *Y*

At any particular receiver:

$$Y = AX + Z$$

where: X is $n \times m$; Y, Z are $N \times m$; and A is $N \times n$.

A Basic Model

In previous work¹ we considered a basic stochastic linear matrix channel model:

$$Y = AX + Z$$

where

- X and Y are $n \times m$ matrices over \mathbb{F}_q ;
- A is $n \times n$, nonsingular, drawn uniformly at random;
- Z is $n \times m$ with rank t, drawn uniformly at random;
- X, A, and Z are independent.

¹D. Silva, K., R. Kötter, "Communication over Finite-Field Matrix Channels," *IEEE Trans. Inf. Theory*, vol. 56, pp. 1296–1305, Mar. 2010.

MAMC: Capacity

Theorem (upper bound)

For $n \leq m/2$,

$$\mathcal{C}_{\mathsf{MAMC}} \leq (m-n)(n-t) + \log_q 4(n+1)(t+1).$$

Theorem (lower bound)

Assume $n \leq m$. For any $\epsilon \geq 0$, we have

$$C_{\text{MAMC}} \ge (m-n)(n-t-\epsilon t) - \log_q 4 - \frac{2tnm}{q^{1+\epsilon t}}.$$

These upper and lower bounds match when $q \to \infty$ or $m \to \infty$ (with n/m and t/n fixed).

MAMC: Capacity

Corollary

For large m or large q,

$$C_{\text{MAMC}} \approx (m-n)(n-t).$$

Strategy: Channel Sounding + Error Trapping

Use channel sounding "inside" and error trapping "outside" (but not the opposite!)

MAMC: A Coding Scheme

First, rewrite the channel model as

$$Y = AX + Z = A(X + A^{-1}Z) = A(X + W)$$
, where $W = A^{-1}Z$,

and suppose a "genie" gives the receiver X + W. Let data matrix D be $(n - t) \times (m - n)$. We have:

$$X = \begin{bmatrix} 0 & 0 & 0 \\ 0 & I & D \end{bmatrix} \qquad W = \begin{bmatrix} W_1 & W_2 & W_3 \\ W_4 & W_5 & W_6 \end{bmatrix}$$

Assume that rank $W_1 = t = \operatorname{rank} W$ (= rank Z). In this case, for some matrix B, we have

$$W = \begin{bmatrix} W_1 & W_2 & W_3 \\ BW_1 & BW_2 & BW_3 \end{bmatrix}$$

Now convert X + W to reduced row echelon (RRE) form:

$$X + W = \begin{bmatrix} W_1 & W_2 & W_3 \\ BW_1 & I + BW_2 & D + BW_3 \end{bmatrix}$$

$$\stackrel{\text{row op.}}{\longrightarrow} \begin{bmatrix} I & W_1^{-1}W_2 & W_1^{-1}W_3 \\ BW_1 & I + BW_2 & D + BW_3 \end{bmatrix}$$

$$\stackrel{\text{row op.}}{\longrightarrow} \begin{bmatrix} I & W_1^{-1}W_2 & W_1^{-1}W_3 \\ 0 & I & D \end{bmatrix}$$

$$\stackrel{\text{row op.}}{\longrightarrow} \begin{bmatrix} I & 0 & \tilde{W}_3 \\ 0 & I & D \end{bmatrix} = \text{RRE}(X + W).$$

But we have Y, not X + W!

Now convert X + W to reduced row echelon (RRE) form:

$$X + W = \begin{bmatrix} W_1 & W_2 & W_3 \\ BW_1 & I + BW_2 & D + BW_3 \end{bmatrix}$$

$$\stackrel{\text{row op.}}{\longrightarrow} \begin{bmatrix} I & W_1^{-1}W_2 & W_1^{-1}W_3 \\ BW_1 & I + BW_2 & D + BW_3 \end{bmatrix}$$

$$\stackrel{\text{row op.}}{\longrightarrow} \begin{bmatrix} I & W_1^{-1}W_2 & W_1^{-1}W_3 \\ 0 & I & D \end{bmatrix}$$

$$\stackrel{\text{row op.}}{\longrightarrow} \begin{bmatrix} I & 0 & \tilde{W}_3 \\ 0 & I & D \end{bmatrix} = \text{RRE}(X + W).$$

But we have Y, not X + W!

Observation

Y = A(X + W), A is full rank, so Y and X + W have the same row space, which implies that

$$RRE(Y) = RRE(X + W).$$

Thus, D is exposed by reducing Y to RRE form!

MAMC: A Coding Scheme

• Decoding amounts to performing full Gaussian elimination on the received matrix *Y*.

Complexity: $\mathcal{O}(n^2m)$ operations in \mathbb{F}_q to recover (n-t)(m-n) symbols. Defining R = (n-t)(m-t)/mn, we have a complexity of $\mathcal{O}(n/R)$ operations per decoded symbol.

 The scheme fails if W₁ is not invertible. The probability of failure falls exponentially (for fixed m) in the number of bits per field-element, or exponentially (for fixed q) in m (assuming fixed aspect ratio of m/n and fixed t/n).

Theorem

This coding scheme can achieve the capacity of the MAMC when either $q \rightarrow \infty$ or $m \rightarrow \infty$.

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

This Talk:

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

A: it could be useful for nested-lattice-based physical-layer network coding (LNC), a form of compute-and-forward relaying à la
B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes," *IEEE Trans. Inf. Theory*, vol. 57, pp. 6463–6486, Oct. 2011.

Compute-and-Forward: Nested Lattices

Nested Lattices

Fine lattice $\Lambda,$ coarse lattice $\Lambda'\subseteq\Lambda,$ and lattice quotient Λ/Λ'

$$\mathbf{G}_{\Lambda} = \begin{bmatrix} \sqrt{3} & 1 \\ 0 & 2 \end{bmatrix}$$
$$\Lambda = \{\mathbf{r}\mathbf{G}_{\Lambda} : \mathbf{r} \in \mathbb{Z}^2\}$$
$$\Lambda' = 3\Lambda$$

Complex *R***-Lattices**

Let *R* be a discrete subring of \mathbb{C} forming a principal ideal domain. Let $N \leq n$. An *R*-lattice of dimension *N* in \mathbb{C}^n is defined as the set of all *R*-linear combinations of *N* linearly independent vectors, i.e.,

$$\Lambda = \{ \mathbf{r} \mathbf{G}_{\Lambda} : \mathbf{r} \in R^{N} \},\$$

where $\mathbf{G}_{\Lambda} \in \mathbb{C}^{N \times n}$ is called a generator matrix for Λ .

 $R = \mathbb{Z}[\omega] \Rightarrow$ Eisenstein lattices; $R = \mathbb{Z}[i] \Rightarrow$ Gaussian lattices

•	•	•
•	•	•
•	•	•

$$\mathbb{Z}[\omega] \triangleq \{a + b\omega : a, b \in \mathbb{Z}, \omega = e^{i2\pi/3}\}$$
 $\mathbb{Z}[i] \triangleq \{a + bi : a, b \in \mathbb{Z}\}$
 $\Lambda = \mathbb{Z}[i]$
 $\Lambda' = 3\mathbb{Z}[i]$

Compute-and-Forward: Structure of Λ/Λ'

Theorem

$$\Lambda/\Lambda' \cong R/\langle \pi_1 \rangle \times \cdots \times R/\langle \pi_k \rangle$$

for some nonzero, non-unit $\pi_1, \ldots, \pi_k \in R$ such that $\pi_1 | \cdots | \pi_k$. Moreover, there exists a surjective *R*-module homomorphism $\varphi : \Lambda \to R/\langle \pi_1 \rangle \times \cdots \times R/\langle \pi_k \rangle$ whose kernel is Λ' .

 $\Lambda/\Lambda' \cong \mathbb{Z}[i]/\langle 3 \rangle$

$$arphi({\it a}+{\it bi})=({\it a}+{\it bi})$$
 mod 3

$$\varphi^{-1}(c+di) = (c+di) + \Lambda'$$

Compute-and-Forward: Architecture

 $R/\langle \pi_1
angle imes \cdots imes R/\langle \pi_k
angle$ is the message space Ω

Encoding

Transmitter ℓ sends $\mathbf{x}_{\ell} \in \Lambda$, a coset representative of $\varphi^{-1}(\mathbf{w}_{\ell})$

Decoding

Receiver first recovers $\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}$ from $\alpha \mathbf{y}$; Receiver then maps $\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}$ onto $\sum_{\ell} a_{\ell} \mathbf{w}_{\ell}$ via φ

Remark: $\alpha \mathbf{y} - \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} = \sum_{\ell} (\alpha h_{\ell} - a_{\ell}) \mathbf{x}_{\ell} + \alpha \mathbf{z}$ "effective noise"

Construction Examples

Example 1: [Ordentlich, Zhan, Erez, Gastpar, Nazer, ISIT'11]
Λ is obtained using Construction A applied to binary (n = 64800, k = 54000) LDPC code C, with mod-4 shaping:

$$\Lambda = C + 2\mathbb{Z}^n, \quad \Lambda' = 4\mathbb{Z}^n.$$

• Induced message space: $\mathbb{Z}_4^{54000}\times\mathbb{Z}_2^{10800}$

Example 2: Turbo Lattices [Sakzad, Sadeghi, Panario, Allerton'10]

• A is obtained using Construction D applied to nested turbo codes C_2 : $(n = 10131, k_2 = 3377)$ and C_1 : $(n = 10131, k_1 = 5065)$;

$$\Lambda = C_2 + 2C_1 + 4\mathbb{Z}^n, \quad \Lambda' = 4\mathbb{Z}^n.$$

• Induced message space: $\mathbb{Z}_4^{3377} \times \mathbb{Z}_2^{1688}$ In general, for most practical constructions, we have

$$\Omega = R/\langle \pi^{t_0}
angle imes \cdots imes R/\langle \pi^{t_{m-1}}
angle, \ t_0 \geq \ldots \geq t_{m-1}.$$

Much Ongoing Work:

B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes," *IEEE Trans. Inf. Theory*, vol. 57, no. 10, pp. 6463–6486, Oct. 2011.

M. P. Wilson, K. Narayanan, H. D. Pfister, and A. Sprintson, "Joint physical layer coding and network coding for bidirectional relaying," *IEEE Trans. Inf. Theory*, vol. 56, no. 11, pp. 5641–5654, Nov. 2010.
N. E. Tunali, K. R. Narayanan, J. J. Boutros, and Y.-C. Huang, "Lattices over Eisenstein integers for compute-and-forward," in *Proc. 2012 Allerton Conf. Commun., Control, and Comput.*, Monticello, IL, Oct. 2012, pp. 33–40.

S. Qifu and J. Yuan, "Lattice network codes based on Eisenstein integers," in *Proc. 2012 IEEE Int. Conf. on Wireless and Mobile Comput.*,

Barcelona, Spain, Oct. 2012, pp. 225-231.

A. Osmane and J.-C. Belfiore, "The compute-and-forward protocol: implementation and practical aspects," 2011.

S. Gupta and M. A. Vázquez-Castro, "Physical-layer network coding based on integer-forcing precoded compute-and-forward," 2013.

Chain Rings, Modules, Matrices

Commutative Rings with Identity $1 \neq 0$

- Ideals in a ring can be partially ordered by subset inclusion.
- The resulting poset is called the lattice of ideals of the ring.

Chain ring: ideals are linearly ordered. Ex: \mathbb{Z}_8 . Principal ideal ring: every ideal gen. by 1 element. Ex: \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$. Local ring: unique maximal proper ideal. Ex: \mathbb{Z}_8 , $\mathbb{Z}_2[X, Y]/\langle X, Y \rangle^2$.

Proposition

If R is a ring and N is a **maximal** ideal of R, then R/N is a **field**.

This is called a residue field.

Proposition

A finite ring is a **chain** ring if and only if it is both **local** and **principal**.

Proposition

Every finite principal ideal ring is a product of finite chain rings.

Finite Chain Rings: The Ideals

Let R be a finite chain ring, where

- $\langle \pi \rangle$ is the unique maximal ideal,
- q is the order of the residue field,
- s is the number of proper ideals.

Proposition

The lattice of ideals of R is

 $R \supset \langle \pi \rangle \supset \langle \pi^2 \rangle \supset \cdots \supset \langle \pi^{s-1} \rangle \supset \langle \pi^s \rangle = \{0\}.$

We have $|\langle \pi^i \rangle| = q^{s-i}$; in particular $|R| = q^s$.

Notation: (q, s) chain ring.

The following are two non-isomorphic (q = 2, s = 2) chain rings.

In other words, specifying q and s does not uniquely specify the chain ring.

Finite Chain Rings: The π -adic Decomposition

Let R be a (q, s) chain ring.

Proposition

Fix the following:

- $\pi \in \mathbf{R}$, a generator for the maximal ideal $\langle \pi \rangle$.
- $\mathcal{R}(R,\pi)$, a complete set of residues with respect to π .

Then every element $r \in R$ can be written uniquely as

$$r = r_0 + r_1 \pi + r_2 \pi^2 + \dots + r_{s-1} \pi^{s-1}$$

where $r_i \in \mathcal{R}(R, \pi)$.

This is known as the π -adic decomposition.

Definition

The degree, deg(r), of a nonzero element $r \in R^*$, where

$$r = r_0 + r_1 \pi + \dots + r_{s-1} \pi^{s-1},$$

is defined as the *least* index *j* for which $r_j \neq 0$.

- by convention, deg(0) = s
- units have degree zero
- elements of the same degree are associates
- a divides b if and only if $deg(a) \le deg(b)$
- $\deg(a+b) \geq \min\{\deg(a), \deg(b)\}$

Shapes

An *s*-shape $\mu = (\mu_1, \mu_2, \dots, \mu_s)$ is a sequence of non-decreasing non-negative integers, i.e., $0 \le \mu_1 \le \mu_2 \le \dots \le \mu_s$. We denote by $|\mu|$ the sum of its components, i.e., $|\mu| = \sum_{i=1}^{s} \mu_i$.

Example: $\mu = (4, 6, 8)$ * * * * * * * * * * |(4, 6, 8)| = 18 * * * * * * * *

For convenience, we will sometimes identify the integer t with the s-shape (t, \ldots, t) . An s-shape $\kappa = (\kappa_1, \ldots, \kappa_s)$ is said to be a subshape of $\mu = (\mu_1, \ldots, \mu_s)$, written $\kappa \leq \mu_i$, if $\kappa_i \leq \mu_i$ for all $i = 1, \ldots, s$. * * * * * * * * * * * (4,4,5) \leq (4,6,8) * * * * * * * * *

From Shape to Module

When R is a finite chain ring, an R-module is always isomorphic to a direct product of various ideals of R; this structure can be described by a *shape*.

Definition

Let R be a (q, s) chain ring with maximal ideal $\langle \pi \rangle$. For any s-shape μ , we define the R-module R^{μ} as

$$R^{\mu} \triangleq \underbrace{\langle 1 \rangle \times \cdots \times \langle 1 \rangle}_{\mu_{1}} \times \underbrace{\langle \pi \rangle \times \cdots \times \langle \pi \rangle}_{\mu_{2} - \mu_{1}} \times \cdots \times \underbrace{\langle \pi^{s-1} \rangle \times \cdots \times \langle \pi^{s-1} \rangle}_{\mu_{s} - \mu_{s-1}}.$$

 $R^{(\mu_1,\ldots,\mu_s)}$ is a collection of μ_s -tuples over R, whose π -adic coordinate array must satisfy degree constraints specified by (μ_1,\ldots,μ_s) .

Note that $|R^{\mu}| = q^{|\mu|}$.

From Module to Shape

Conversely, we have the following theorem (see, e.g., $[HL00]^2$).

Theorem

For any finite R-module M over a (q, s) chain ring R, there is a unique s-shape μ such that $M \cong R^{\mu}$.

- We call the unique shape μ associated with a module M the shape of M, and write μ = shape M.
- If M' is a submodule of M, then shape M' ≤ shape M, i.e., the shape of a submodule is a subshape of the module.

For example, the module spanned by 1111 and 0022 over \mathbb{Z}_8 has shape (1,2,2). This module contains 2⁵ 4-tuples, and is isomorphic to $\langle 1 \rangle \times \langle 2 \rangle$.

²T. Honold and I. Landjev, "Linear Codes over Finite Chain Rings," *The Electronic J. of Combinatorics*, vol. 7, 2000.

It is also known [HL00] that the number of submodules of R^{μ} whose shape is κ is given by

$$\begin{bmatrix} \mu \\ \kappa \end{bmatrix}_{q} = \prod_{i=1}^{s} q^{(\mu_{i}-\kappa_{i})\kappa_{i-1}} \begin{bmatrix} \mu_{i}-\kappa_{i-1} \\ \kappa_{i}-\kappa_{i-1} \end{bmatrix}_{q}, \qquad (1)$$

where

$$\begin{bmatrix} m \\ k \end{bmatrix}_q riangleq \prod_{i=0}^{k-1} rac{q^m - q^i}{q^k - q^i}$$

is the Gaussian coefficient.

In particular, when the chain length s = 1, R becomes the finite field \mathbb{F}_q of q elements, and $\begin{bmatrix} \mu \\ \kappa \end{bmatrix}_q$ becomes $\begin{bmatrix} \mu_1 \\ \kappa_1 \end{bmatrix}_q$, which is the number of κ_1 -dimensional subspaces of $\mathbb{F}_q^{\mu_1}$.

Matrices over Finite Chain Rings

Notation for matrices:

- $R^{n \times m}$: the set of all $n \times m$ matrices with entries from ring R.
- U ∈ R^{n×n} is invertible if UV = VU = I_n for some V ∈ R^{n×n}, where I_n denotes the n×n identity matrix. The set of invertible matrices in R^{n×n} forms the general linear group GL_n(R) under multiplication.
- A, B ∈ R^{n×m} are left-equivalent if there exists a matrix U ∈ GL_n(R) such that UA = B.
- A, B ∈ R^{n×m} are equivalent if there exist matrices U ∈ GL_n(R) and V ∈ GL_m(R) such that UAV = B.
- D ∈ R^{n×m} is a diagonal matrix if D[i, j] = 0 whenever i ≠ j. A diagonal matrix need not be square.

$$\left[\begin{array}{cccc} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \end{array}\right] \qquad \qquad \left[\begin{array}{cccc} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \\ 0 & 0 & 0 \end{array}\right]$$

Smith Normal Form

Definition

A diagonal matrix $D = \text{diag}(d_1, \ldots, d_r) \in \mathbb{R}^{n \times m}$ is called a Smith normal form of $A \in \mathbb{R}^{n \times m}$, if D is equivalent to A and $d_1 \mid d_2 \mid \cdots \mid d_r$ in R, where $r = \min\{n, m\}$.

Every matrix over a PIR (in particular, a finite chain ring) has a Smith normal form whose diagonal entries are unique up to equivalence of associates.

Over $R = \mathbb{Z}_8$

$$A = \begin{bmatrix} 4 & 6 & 2 & 1 \\ 0 & 0 & 0 & 2 \\ 2 & 4 & 6 & 1 \\ 2 & 0 & 2 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} 0 & 2 & 2 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_{V}$$

with invertible U and V. Since $1 \mid 2 \mid 4 \mid 0$ in \mathbb{Z}_8 , S is the Smith normal form of A.

- For A ∈ R^{n×m}, denote by row A and col A the row span and column span of A, respectively.
- From the Smith normal form, it is easy to see that row A ≅ col A.
- Two matrices A, B ∈ R^{n×m} are left-equivalent if and only if row A = row B.
- Two matrices A, B ∈ R^{n×m} are equivalent if and only if row A ≅ row B.

Shape of a Matrix

Definition

The *shape* of a matrix A is defined as the shape of the row span of A, i.e.,

shape A = shape(row A).

Clearly, shape A = shape(col A).

shape $A = \mu$ if and only if the Smith normal form of A is given by

$$\mathsf{diag}(\underbrace{1,\ldots,1}_{\mu_1},\underbrace{\pi,\ldots,\pi}_{\mu_2-\mu_1},\ldots,\underbrace{\pi^{s-1},\ldots,\pi^{s-1}}_{\mu_s-\mu_{s-1}},\underbrace{0,\ldots,0}_{r-\mu_s})$$

where $r = \min\{n, m\}$. A matrix $U \in \mathbb{R}^{n \times n}$ is invertible if and only if shape $U = (n, \dots, n)$.

Example

If A has Smith normal form D = diag(1, 2, 4, 0) over \mathbb{Z}_8 then shape A = (1, 2, 3).

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$. Then

- shape $A = \text{shape } A^T$, where A^T is the transpose of A.
- For any $P \in GL_n(R)$, $Q \in GL_m(R)$, shape A = shape PAQ.
- shape $AB \leq$ shape A, shape $AB \leq$ shape B.
- For any submatrix C of A, shape $C \leq$ shape A.

Let R be a (q, s) chain ring with maximal ideal $\langle \pi \rangle$, fixing a complete set of residues $\mathcal{R}(R, \pi)$ (including 0), and for $1 < \ell < s$, fixing

$$\mathcal{R}(R,\pi^\ell) = \left\{\sum_{i=0}^{\ell-1} a_i \pi^i \colon a_0, \ldots, a_{\ell-1} \in \mathcal{R}(R,\pi)
ight\}.$$

Example: $R = \mathbb{Z}_8$

If $R = \mathbb{Z}_8$, with $\pi = 2$, we might fix $\mathcal{R}(R, 2) = \{0, 1\}$, so that $\mathcal{R}(R, 4) = \{0, 1, 2, 3\}.$

In a matrix A:

- The element A[i, j] occurs above A[i', j'] if i < i'. (Equivalently, A[i', j'] occurs below A[i, j].)
- The element A[i, j] occurs earlier than A[i', j'] if j < j'. (Equivalently, A[i', j'] occurs later than A[i, j].)
- The first element in row *i* with property *P* occurs earlier than any other element in row *i* with property *P*.
- The pivot of a nonzero row of A is the first entry among the entries having least degree in that row. For example, the pivot of [0 4 6 2] over Z₈ is the element 6.
Row Canonical Form (cont'd)

Definition

A matrix A is in *row canonical form* if it satisfies the following conditions.

- **1** Nonzero rows of *A* are above any zero rows.
- 2 If A has two pivots of the same degree, the one that occurs earlier is above the one that occurs later. If A has two pivots of different degree, the one with smaller degree is above the one with larger degree.
- **3** Every pivot is of the form π^{ℓ} for some $\ell \in \{0, \ldots, s-1\}.$
- ④ For every pivot (say π^ℓ), all entries below and in the same column as the pivot are zero, and all entries above and in the same column as the pivot are elements of R(R, π^ℓ).

For example, over \mathbb{Z}_8 , $A = \begin{bmatrix} 0 & 2 & 0 & \overline{1} \\ \overline{2} & 2 & 0 & 0 \\ 0 & 0 & \overline{2} & 0 \\ 0 & \overline{4} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

is in row canonical form.

Basic Facts

Let $A \in \mathbb{R}^{n \times m}$ be a matrix in row canonical form, let p_k be the pivot of the kth row, let c_k be the index of the column containing p_k . (If the kth row is zero, let $p_k = 0$ and $c_k = 0$.) Let $d_k = \deg(p_k)$, and let $w = (w_1, \ldots, w_m)$ be an arbitrary element of row A.

- Any column of A contains at most one pivot.
- If A has more than one row, deleting a row of A results in a matrix also in row canonical form.

3
$$i \geq k$$
 implies deg $(A[i,j]) \geq d_k$.

- $(i \ge k \text{ and } j < c_k) \text{ or } (i > k \text{ and } j \le c_k) \text{ implies } \\ deg(A[i, j]) > d_k.$
- **5** p_1 divides $w_1, w_2, ..., w_m$.
- **(a)** $j < c_1$ implies deg $(w_j) > d_1$.

Reduction to Row Canonical Form

PIVOTSELECTION: given a submatrix, return the row and column index of the earliest occurring pivot of least possible degree; otherwise declare the submatrix to be zero. Given a matrix A:

- Step k = 1: apply PIVOTSELECTION to A; move the selected row to row 1, normalize (make sure the first pivot is of the form π^{ℓ}), and cancel all elements below the pivot (which must all be multiples of the first pivot). Call the resulting matrix A_1 , and increment k.
- For k ≥ 2, apply PIVOTSELECTION to the rows of A_{k-1}, excluding the first k − 1 rows. If no pivot can be found, stop; otherwise, move the selected row to row k, normalize to π^ℓ, cancel all elements below the pivot, and reduce all elements above the pivot to elements of R(R, π^ℓ). Call the resulting matrix A_k, and increment k.

Theorem

For any $A \in \mathbb{R}^{n \times m}$, the algorithm described above computes a row canonical form of A.

Theorem

For any $A \in \mathbb{R}^{n \times m}$, the row canonical form of A is unique.

Example:

$$A = \begin{bmatrix} 4 & 6 & 2 & \overline{1} \\ 0 & 0 & 0 & 2 \\ 2 & 4 & 6 & 1 \\ 2 & 0 & 2 & 1 \end{bmatrix} \rightarrow A_1 = \begin{bmatrix} 4 & 6 & 2 & 1 \\ 0 & 4 & 4 & 0 \\ \overline{6} & 6 & 4 & 0 \\ 6 & 2 & 0 & 0 \end{bmatrix} \rightarrow$$
$$A'_1 = \begin{bmatrix} 4 & 6 & 2 & 1 \\ \overline{2} & 2 & 4 & 0 \\ 0 & 4 & 4 & 0 \\ 6 & 2 & 0 & 0 \end{bmatrix} \rightarrow A_2 = \begin{bmatrix} 0 & 2 & 2 & 1 \\ 2 & 2 & 4 & 0 \\ 0 & \overline{4} & 4 & 0 \\ 0 & 4 & 4 & 0 \end{bmatrix} \rightarrow$$
$$A_3 = \begin{bmatrix} 0 & 2 & 2 & \overline{1} \\ \overline{2} & 2 & 4 & 0 \\ 0 & \overline{4} & 4 & 0 \\ 0 & \overline{4} & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
which is in row canonical form.

Matrix Shape via Row Canonical Form

Let *B* be the row canonical form of $A \in \mathbb{R}^{n \times m}$ with *k* nonzero rows. Let p_i be the pivot in the *i*th row of *B*, where $i \in \{1, \ldots, k\}$. Let $r = \min\{n, m\}$. Clearly, $k \leq r$. Then the Smith normal form of *A* is given by

$$\mathsf{diag}(p_1,\ldots,p_k,\underbrace{0,\ldots,0}_{r-k})\in R^{n\times m},$$

from which the shape of *A* is readily available. Example:

$$A = \begin{bmatrix} 4 & 6 & 2 & 1 \\ 0 & 0 & 0 & 2 \\ 2 & 4 & 6 & 1 \\ 2 & 0 & 2 & 1 \end{bmatrix} \rightarrow B = \begin{bmatrix} 0 & 2 & 2 & 1 \\ 2 & 2 & 4 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

over \mathbb{Z}_8 . Since *B* is the row canonical form of *A*, we see that the Smith normal form is diag(1, 2, 4, 0), and hence shape A = (1, 2, 3).

π -adic Decomposition

Let $R^{n \times \mu}$ denote the set of matrices in $R^{n \times m}$ whose rows are elements of R^{μ} . Every matrix X in $R^{n \times \mu}$ decomposes according to its π -adic decomposition as

$$X = X_0 + \pi X_1 + \dots + \pi^{s-1} X_{s-1}$$

with each auxiliary matrix X_i (i = 0, ..., s - 1) satisfying:

1 $X_i[1:n, 1:\mu_{i+1}]$ is an arbitrary matrix over $\mathcal{R}(R, \pi)$, and

2 all other entries in X_i are zero.

Example:
$$n = 6$$
, $\mu = (4, 6, 8)$.

- * * * *
- * * * * * *

* * * * * * * *

<i>X</i> ₀ =	* * * * *	* * * * * *	* * * * * * *	* * * * *	0			
$X_1 =$	* * * * * *	* * * * *	* * * * * *	* * * * * * * * * 2-	* * * * *	* * * * *	0	
$X_2 =$	* * * * *	* * * * *	* * * * *	* * * *	* * * * *	* * * * *	* * * * *	* * * * *
	*	*	*	* -μ	*	*	*	*

Row Canonical Forms in $\mathcal{T}_{\kappa}(R^{n \times \mu})$

Let $\mathcal{T}_{\kappa}(R^{n \times \mu})$ denote the set of matrices in $R^{n \times \mu}$ whose shape is κ , where $\kappa \leq n$ and $\kappa \leq \mu$.

The row canonical forms in $\mathcal{T}_{\kappa}(R^{n \times \mu})$ are in one-to-one correspondence with the submodules of R^{μ} having shape κ ; thus there are $\begin{bmatrix} \mu \\ \kappa \end{bmatrix}_{q}$ such row canonical forms.

Example:

Let $R = \mathbb{Z}_4$, and let n = 2, $\mu = (2, 3)$, $\kappa = (1, 2)$. Then $\begin{bmatrix} \mu \\ \kappa \end{bmatrix}_q = 18$. These 18 row canonical forms can be classified into 4 categories based on the positions of their pivots:

$$\underbrace{\begin{bmatrix} 1 & * & * \\ 0 & 2 & * \end{bmatrix}}_{8} \quad \underbrace{\begin{bmatrix} 0 & 1 & * \\ 2 & 0 & * \end{bmatrix}}_{4} \quad \underbrace{\begin{bmatrix} 1 & * & 0 \\ 0 & 0 & 2 \end{bmatrix}}_{4} \quad \underbrace{\begin{bmatrix} * & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}}_{2}$$

Clearly, the first category, whose pivots occur as early as possible, contains a significant portion of all possible row canonical forms.

Principal RCFs — The "Thick Cell"

Definition

A row canonical form in $\mathcal{T}_{\kappa}(R^{n \times \mu})$ is called *principal* if its diagonal entries d_1, d_2, \ldots, d_r $(r = \min\{n, m\})$ have the following form:

$$d_1,\ldots,d_r=\underbrace{1,\ldots,1}_{\kappa_1},\underbrace{\pi,\ldots,\pi}_{\kappa_2-\kappa_1},\ldots,\underbrace{\pi^{s-1},\ldots,\pi^{s-1}}_{\kappa_s-\kappa_{s-1}},\underbrace{0,\ldots,0}_{r-\kappa_s}.$$

All principal RCFs in $\mathcal{T}_{\kappa}(R^{n \times \mu})$ can be constructed via a π -adic decomposition:

Illustration of the construction of principal row canonical forms for $\mathcal{T}_{\kappa}(\mathbb{R}^{n \times \mu})$ with s = 3, n = 6, $\mu = (4, 6, 8)$, and $\kappa = (2, 3, 4)$.

Counting Principal RCFs in $\mathcal{T}_{\kappa}(R^{n \times \mu})$

Note that the number of principal row canonical forms in $\mathcal{T}_{\kappa}(R^{n imes \mu})$ is

$$P_q(\mu,\kappa) = q^{\sum_{i=1}^s \kappa_i(\mu_i - \kappa_i)}$$

The number of row canonical forms in $\mathcal{T}_{\kappa}(R^{n \times \mu})$ in total is

$$\begin{bmatrix} \mu \\ \kappa \end{bmatrix}_{q} = \prod_{i=1}^{s} q^{(\mu_{i}-\kappa_{i})\kappa_{i-1}} \begin{bmatrix} \mu_{i}-\kappa_{i-1} \\ \kappa_{i}-\kappa_{i-1} \end{bmatrix}_{q}$$

Since $q^{k(m-k)} \leq {m \brack k}_q < 4q^{k(m-k)}$, we have

$$1 \leq \frac{\left[\begin{smallmatrix} \mu \\ \kappa \end{smallmatrix}\right]_q}{P_q(\mu,\kappa)} < 4^s,$$

i.e., the number of principal RCFs in $\mathcal{T}(\mathbb{R}^{n \times \mu})$ grows at the same rate as the number of RCFs in total.

We can partition the matrices in $\mathcal{T}_{\kappa}(R^{n \times \mu})$ based on their row canonical forms: two matrices belong to the same class if and only if they have the same row canonical form.

- The number of classes is $\begin{bmatrix} \mu \\ \kappa \end{bmatrix}_q$.
- The number of matrices in each class is

$$|R^{n imes\kappa}|\prod_{i=0}^{\kappa_s-1}(1-q^{i-n})=q^{n|\kappa|}\prod_{i=0}^{\kappa_s-1}(1-q^{i-n})=$$

It follows that

$$|\mathcal{T}_\kappa(R^{n imes\mu})| = q^{n|\kappa|} \prod_{i=0}^{\kappa_{s}-1} (1-q^{i-n}) \left[\!\!\left[egin{smallmatrix} \mu \ \kappa \end{array} \!
ight]\!\!
ight]_q$$

Matrix Channels over Finite Chain Rings

Let R be a (q, s) chain ring, and let μ be an *s*-shape. We think of R^{μ} as the "packet space" associated with a network. The length, m, of each packet is given by μ_s .

- The transmitter sends n packets, each constrained to be an element of R^µ. These form the rows of the transmitted matrix X ∈ R^{n×µ}.
- The receiver gathers N packets, each also an element of R^µ. These form the rows of the received matrix Y ∈ R^{N×µ}.
- Noise is modelled by the injection of t packets into the network, each also an element of R^µ. These form the rows of X the noise matrix Z ∈ R^{t×µ}.
- In general, we have

$$Y = AX + BZ$$

for some transfer matrices $A \in \mathbb{R}^{N \times n}$ and $B \in \mathbb{R}^{N \times t}$.

Our model is Y = AX + BZ.

- A well-defined discrete memoryless channel with input alphabet $R^{n \times \mu}$, output alphabet $R^{N \times \mu}$ and channel transition probability $p_{Y|X}$ is obtained once a joint distribution for $p_{Z,A,B|X}$ is specified.
- The capacity of this channel is given, as usual, by

$$C = \max_{p_X} I(X;Y)$$

where p_X is the input distribution. (We will take logarithms to base q, so the capacity is given in q-qary symbols per channel use.)

How does capacity scale with packet length? Given a channel with a given n, N, μ , and t, we define the kth extension as the channel in which the transmitter sends kn packets of shape $k\mu$, the receiver gather kN packets of this shape, the noise matrix has kt rows, and the channel law is suitably generalized, giving capacity C_k .

Definition

We define the asymptotic capacity as

$$\overline{C} = \lim_{k \to \infty} \frac{1}{(kn)|k\mu|} C_k = \frac{1}{n|\mu|} \lim_{k \to \infty} \frac{C_k}{k^2}.$$

Note that \overline{C} is normalized such that $\overline{C} = 1$ if the channel is noiseless (i.e., A = I and Z = 0).

The Independent Transfer Model

Let τ be an *s*-shape such that $\tau \leq t, \mu$. We study the case where:

- the transfer matrix A is uniform over $GL_n(R)$ (in particular, N = n),
- *B* is uniform over $\mathcal{T}_t(R^{n \times t})$,
- Z is uniform over $\mathcal{T}_{\tau}(R^{t \times \mu})$,
- X, A, B and Z are statistically independent.

In this case we can re-write the channel model as

$$Y = A(X + A^{-1}BZ) = A(X + W),$$

where $A \in GL_n(R)$ and $W \triangleq A^{-1}BZ \in \mathcal{T}_{\tau}(R^{n \times \mu})$ are chosen uniformly at random and independently from any other variables.

First warmup problem

The multiplicative matrix channel (MMC):

Y = AX

where

- $X, Y \in \mathbb{R}^{n \times \mu}$;
- $A \sim \text{Unif}[GL_n(R)];$
- A and X are independent.

MMC: Exact Capacity

It is easy to find the capacity of a channel defined by a group action.

- Let \mathcal{G} be a finite group that acts on a finite set \mathcal{S} .
- Consider a channel with input X ∈ S, output Y ∈ S and channel law Y = AX, where A ~ Unif[G] and A and X are independent.
- The capacity of this channel is

$$C = \log |\mathcal{S}/\mathcal{G}|,$$

where $|\mathcal{S}/\mathcal{G}|$ is the number of orbits of the action.

 One capacity-achieving input distribution is to sample uniformly over a complete system of orbit-representatives.

MMC: Exact Capacity

In the case of the MMC,

- $GL_n(R)$ acts on $R^{n \times \mu}$ by left-multiplication.
- The orbits are the sets of matrices that share the same row module.
- The number of such orbits is the number of submodules of R^{μ} with shape $\leq n, \mu$.

Theorem

The capacity of the MMC, in q-ary symbols per channel use, is given by

$$\mathcal{C}_{MMC} = \log_{q} \sum_{\lambda \preceq n, \mu} \begin{bmatrix} \mu \\ \lambda \end{bmatrix}_{q}.$$

A capacity-achieving code $C \subseteq R^{n \times \mu}$ consists of all possible row canonical forms in $R^{n \times \mu}$.

(This scheme encodes information in the choice of submodules, generalizing the "transmission via subspaces" approach of [KK08].)

MMC: Asymptotic Capacity

The capacity C_{MMC} is bounded by

$$\sum_{i=1}^{s} \kappa_i (\mu_i - \kappa_i) \le C_{\mathsf{MMC}} \le \sum_{i=1}^{s} \kappa_i (\mu_i - \kappa_i) + \log_q 4^s \binom{n+s}{s} \quad (2)$$

where $\kappa_i = \min\{n, \lfloor \mu_i/2 \rfloor\}$.

Theorem

$$\overline{C}_{MMC} = \frac{\sum_{i=1}^{s} \kappa_i (\mu_i - \kappa_i)}{n|\mu|},$$

where $\kappa_i = \min\{n, \lfloor \mu_i/2 \rfloor\}.$

The choice of subshape κ essentially maximizes the number of principal row canonical forms having fixed subshape. Thus, asymptotically, capacity can be achieved by always transmitting principal row canonical forms with a fixed subshape!

Let
$$\kappa = (\kappa_1, \ldots, \kappa_s)$$
 with $\kappa_i = \min\{n, \lfloor \mu_i/2 \rfloor\}$.

 Encoding: choose the input matrix X from the set of principal RCFS for T_κ(R^{n×μ}) using the π-adic decomposition given earlier. The encoding rate is

$$R_{\text{MMC}} = \sum_{i=1}^{s} \kappa_i (\mu_i - \kappa_i).$$

• Decoding: upon receiving *Y* = *AX*, the decoder simply computes the row canonical form of *Y*. The decoding is always correct by the uniqueness of the row canonical form.

This coding scheme achieves the asymptotic capacity \overline{C}_{MMC} .

Second warmup problem

The additive matrix channel (AMC):

Y = X + W

where

- $X, Y \in \mathbb{R}^{n \times \mu}$;
- $W \sim \text{Unif}[\mathcal{T}_{\tau}(R^{n \times \mu})];$
- W and X are independent.

The AMC is an example of a discrete symmetric channel.

Theorem

The capacity of the AMC, in q-ary symbols per channel use, is given by

$$C_{AMC} = \log_q |R^{n \times \mu}| - \log_q |\mathcal{T}_{\tau}(R^{n \times \mu})|,$$

achieved by the uniform input distribution.

AMC: Asymptotic Capacity

The capacity C_{AMC} is bounded by

$$\sum_{i=1}^{s} (n- au_i)(\mu_i- au_i) - \log_q 4^s \prod_{i=0}^{ au_s-1} (1-q^{i-n}) < C_{\mathsf{AMC}} < \sum_{i=1}^{s} (n- au_i)(\mu_i- au_i) - \log_q \prod_{i=0}^{ au_s-1} (1-q^{i-n}).$$

Theorem

The asymptotic capacity \overline{C}_{AMC} is given by

$$\overline{C}_{AMC} = \frac{\sum_{i=1}^{s} (n - \tau_i)(\mu_i - \tau_i)}{n|\mu|}$$

AMC: Error-trapping Encoding

We focus on the special case when $\tau = t = (t, ..., t)$. Set $v \ge t$ and transmit a matrix X of the form

$$X = \begin{bmatrix} 0 & 0 \\ 0 & U_{(n-\nu)\times(m-\nu)} \end{bmatrix}$$

Clearly

$$R_{\mathsf{AMC}} = \sum_{i=1}^{s} (n-v)(\mu_i - v).$$

AMC: Error-trapping Decoding

Write

$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_1 & \mathcal{W}_2 \\ \mathcal{W}_3 & \mathcal{W}_4 \end{bmatrix}.$$

Suppose shape $W_1 = t$. Then, since shape W = t also, the pivots of W are entirely contained in W_1 . Since the row canonical form of W has t nonzero rows, this means that the upper rows of W can cancel the lower rows, i.e., for some matrix V we have

$$\begin{bmatrix} I & 0 \\ V & I \end{bmatrix} \begin{bmatrix} W_1 & W_2 \\ W_3 & W_4 \end{bmatrix} = \begin{bmatrix} W_1 & W_2 \\ 0 & 0 \end{bmatrix}$$

Indeed, V can be chosen so that $VW_1 = -W_3$, which automatically forces $VW_2 = -W_4$ (since if $VW_2 + W_4 \neq 0$, W would have pivots outside of W_1).

Applying this transformation to Y = X + W yields

$$\begin{bmatrix} I & 0 \\ V & I \end{bmatrix} \begin{bmatrix} W_1 & W_2 \\ W_3 & U + W_4 \end{bmatrix} = \begin{bmatrix} W_1 & W_2 \\ 0 & U \end{bmatrix},$$

exposing the user's data matrix U.

AMC: Error-trapping Decoding (cont'd)

In summary:

- The decoder observes W_1 , W_2 , and W_3 thanks to the error traps.
- If shape $W_1 = t$, then the decoder applies the transformation on the previous slide to expose U.

• If shape $W_1 \neq t$, a decoding failure (detected error) is declared. The probability of decoding failure $P_f = P[\text{shape } W_1 \neq t]$ is bounded as

$$P_f < rac{2t}{q^{1+
u-t}}.$$

If we set v such that $v - t \to \infty$, and $\frac{v-t}{m} \to 0$, as $m \to \infty$, then we have $P_f \to 0$ and $\bar{R}_{AMC} = \frac{R_{AMC}}{n|\mu|} \to \bar{C}_{AMC}$.

Theorem

This coding scheme can achieve the asymptotic capacity of the AMC for the special case when $\tau = t$.

AMMC: Model

Now to the main event:

The additive-multiplicative matrix channel (AMMC):

Y = A(X + W)

where

•
$$X, Y \in R^{n imes \mu}$$
;

- $W \sim \text{Unif}[\mathcal{T}_{\tau}(R^{n \times \mu})];$
- *A* ∼ Unif[GL_n(*R*)];
- A, X and W are independent.

Remark: This model is statistically identical to Y = AX + Z, where $Z \sim \text{Unif}[\mathcal{T}_{\tau}(R^{n \times \mu})]$

AMMC: Upper Bound on Capacity

Theorem

The capacity of the AMMC, in q-ary symbols per channel use, is upper-bounded by

$$C_{AMMC} \leq \sum_{i=1}^{s} (\mu_i - \xi_i)\xi_i + \sum_{i=1}^{s} (n - \mu_i)\tau_i + 2s\log_q 4 + \log_q \binom{n+s}{s} + \log_q \binom{\tau_s + s}{s} - \log_q \prod_{i=0}^{\tau_s - 1} (1 - q^{i-n}), \text{ where } \xi_i = \min\{n, \lfloor \mu_i/2 \rfloor\}.$$

In particular, when $\mu \succeq 2n$, the upper bound reduces to

$$\begin{split} \mathcal{C}_{\mathsf{AMMC}} &\leq \sum_{i=1}^{\mathsf{s}} (n-\tau_i)(\mu_i - n) + 2s \log_q \mathsf{4} \\ &+ \log_q \binom{n+s}{\mathsf{s}} + \log_q \binom{\tau_{\mathsf{s}} + \mathsf{s}}{\mathsf{s}} - \log_q \prod_{i=0}^{\tau_s - 1} (1 - q^{i-n}). \end{split}$$

Theorem

When $\mu \succeq 2n$, the asymptotic capacity \overline{C}_{AMMC} is upper-bounded by

$$\overline{C}_{AMMC} \leq rac{\sum_{i=1}^{s} (n- au_i)(\mu_i - n)}{n|\mu|}$$

AMMC: Coding Scheme

We again focus on the special case when $\tau = t$, and combine the two strategies for the MMC and the AMC.

To **encode**, construct X as

$$X = \begin{bmatrix} 0 & 0 \\ 0 & ar{X} \end{bmatrix},$$

We have $R_{AMMC} = \sum_{i=1}^{s} \kappa_i (\mu_i - v - \kappa_i)$. In particular, when $\mu \succeq 2n$, we have $\lfloor (\mu_i - v)/2 \rfloor \ge n - v$ for all *i*. Thus, $\kappa_i = n - v$ for all *i*, and the encoding rate is $R_{AMMC} = \sum_{i=1}^{s} (n - v)(\mu_i - n)$.

AMMC: Coding Scheme (cont'd)

To **decode**, we must recover \overline{X} from Y = A(X + W).

If we had X + W, we could use the error-trapping decoder to recover

$$\begin{bmatrix} W_1 & W_2 \\ 0 & \bar{X} \end{bmatrix}$$

But we have Y, not X + W. However, since A is invertible, RCF(Y) = RCF(X + W), and one easily sees that

$$\mathsf{RCF}(X+W) = egin{bmatrix} ar{W}_1 & ar{W}_2 \ 0 & ar{X} \ 0 & 0 \end{bmatrix},$$

where the bottom v - t rows are all zero. In summary:

- The decoder first computes RCF(Y).
- It then checks the condition shape $W_1 = t$.
- If the condition does not hold, a decoding failure is declared, otherwise the decoder outputs \bar{X} .

- Nested-lattice-based physical layer network coding naturally transforms wireless multiple-access channels with random fading into random linear network coding channels.
- The algebraic structure of Λ/Λ' is that of a module over a ring.
- In many cases, the ring is a finite-chain ring, so end-to-end error control (for random errors) can be handled using a matrix-channel approach, with simple and asymptotically efficient coding schemes.

- Relaxing the assumption on A
 - What if A is not invertible?
- Relaxing the assumption on W
 - What if W has shape other than $\tau = t$?
- Adversarial error models
 - Always correcting errors when shape(W) $\leq \tau$?
- Rank-metric codes over finite chain rings
 - Which properties can be preserved?

Backup Slides

Physical-Layer Network Coding

Motivation

Router

Routing requires 4 time slots

No. of the local division of the local divis

Network coding requires 3 time slots

Network coding requires 3 time slots. Can we do better?

Router

86

Router

Physical-layer network coding requires 2 time slots

• A new way of dealing with interference process interference instead of avoiding it

• Can be extended to large networks each relay infers some linear combination

Part 1: First PNC schemes

Example 1 (BPSK, $h_1 = h_2 = 1$)

Example 1 (BPSK, $h_1 = h_2 = 1$)

Example 1 (BPSK, $h_1 = h_2 = 1$)

Example 2 (QPSK, $h_1 \approx h_2$)

Example 2 (QPSK, $h_1 \approx h_2$)

Example 2 (QPSK, $h_1 \approx h_2$)

Example 3 (QPSK, $h_1 \approx ih_2$)

Example 3 (QPSK, $h_1 \approx ih_2$)

Example 3 (QPSK, $h_1 \approx ih_2$)

Limitation: phase misalignment \Rightarrow bad performance

Solution 1: require phase synchronization

Solution 2: mitigate phase misalignment by moving beyond XOR

- Popovski & Yomo 2007
- Koike-Akino-Popovski-Tarokh 2008

Solution 3: mitigate phase misalignment by compute-and-forward

• Nazer & Gastpar 2007

Example 4 (QPSK, $h_1 \approx ih_2$)

Example 4 (QPSK, $h_1 \approx ih_2$)

Part 2: Compute-and-Forward

Compute-and-Forward Relaying Strategy

Nazer & Gastpar's Approach (2006)

- Voronoi constellations based on Erez-Zamir's construction
- Main result: achievable rates for one-hop networks
- CSI only at the receivers but not at the transmitters

Similar Approaches

- Narayanan-Wilson-Sprintson (2007)
- Nam-Chung-Lee (2008)
- Wilson-Narayanan (2009)

Remark: all of these are based on Erez-Zamir's construction of Voronoi constellations

pick a fine lattice Λ

pick a coarse lattice Λ^\prime

Voronoi region for the fine lattice Λ

Voronoi region for the coarse lattice Λ'

Each transmitter applies the same Voronoi constellation Λ/Λ'

Transmitter 1 maps \mathbf{w}_1 to a constellation point

Transmitter 2 maps \mathbf{w}_2 to a constellation point

The channel is given by $\mathbf{y} = 2\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{z}$

Hence, the received signal y is like this

But how can we extract some information from y?

The receiver can decode $2\mathbf{x}_1 + \mathbf{x}_2$, if the noise **z** is small

But we need a linear combination of messages...

Note that...

one can construct a one-to-one linear map between \mathbb{F}_3^2 and Λ/Λ'

Hence, an integer combination of lattice points = a linear combination of messages

Key Idea: the Case of Real Channel Gains

What if channel gains are real numbers?

Applying a scaling operation $g(\mathbf{y}) = \alpha \mathbf{y}$

$$\begin{aligned} \alpha \mathbf{y} &= \sum_{\ell} \alpha h_{\ell} \mathbf{x}_{\ell} + \alpha \mathbf{z} \\ &= \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \underbrace{\sum_{\ell} (\alpha h_{\ell} - a_{\ell}) \mathbf{x}_{\ell} + \alpha \mathbf{z}}_{\text{effective noise}} \\ &= \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \mathbf{n}, \end{aligned}$$

where $\{a_{\ell}\}$ are integers, and $\alpha \in \mathbb{R}$ is the scalar. Thus, real-valued channel gains \Rightarrow integer channel gains

Key Idea: the Case of Real Channel Gains

What if channel gains are real numbers?

Applying a scaling operation $g(\mathbf{y}) = \alpha \mathbf{y}$

$$\begin{aligned} \alpha \mathbf{y} &= \sum_{\ell} \alpha h_{\ell} \mathbf{x}_{\ell} + \alpha \mathbf{z} \\ &= \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \underbrace{\sum_{\ell} (\alpha h_{\ell} - a_{\ell}) \mathbf{x}_{\ell} + \alpha \mathbf{z}}_{\text{effective noise}} \\ &= \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \mathbf{n}, \end{aligned}$$

where $\{a_{\ell}\}$ are integers, and $\alpha \in \mathbb{R}$ is the scalar. Thus, real-valued channel gains \Rightarrow integer channel gains

But how shall we choose the scalar α ?

see Nazer-Gastpar (IEEE Trans. Info. Theory, 2011) for details

Key Idea: the Case of Complex Channel Gains

What if channel gains are complex numbers?

Answer: lift real lattices to Gaussian lattices Gaussian integers: $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ Gaussian lattices: any Gaussian integer combination of lattice points is a lattice point

Then, apply a scaling operation $g(\mathbf{y}) = \alpha \mathbf{y}$

$$\alpha \mathbf{y} = \sum_{\ell} \alpha h_{\ell} \mathbf{x}_{\ell} + \alpha \mathbf{z}$$
$$= \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \underbrace{\sum_{\ell} (\alpha h_{\ell} - a_{\ell}) \mathbf{x}_{\ell} + \alpha \mathbf{z}}_{\text{effective noise}}$$
$$= \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \mathbf{n},$$

where $\{a_{\ell}\}$ are Gaussian integers, and $\alpha \in \mathbb{C}$ is the scalar

Main Result: Computation Rate

Computation Rate (Nazer-Gastpar)

$$R_{\rm comp} = \log_2\left(\frac{P}{P\sum_{\ell} \|\alpha h_{\ell} - a_{\ell}\|^2 + N_0 |\alpha|^2}\right)$$

Remark: Erez-Zamir's construction of Voronoi constellations \Rightarrow asymptotically long block length and almost unbounded complexity

Research Problems

What if practical Voronoi constellations are used?

Goal: Practical Design for Compute-and-Forward

- Short block length and low complexity
- Example: wireless fading channel with short coherent time

Research Problems

What if practical Voronoi constellations are used?

Goal: Practical Design for Compute-and-Forward

- Short block length and low complexity
- Example: wireless fading channel with short coherent time

Related Work

- Ordentlich & Erez (2010)
- Hern & Narayanan (2011)
- Tunali & Narayanan (2011)
- Ordentlich-Zhan-Erez-Gastpar-Nazer (2011)
- Feng-Silva-Kschischang (2011)
- Emerging work includes Osmane & Belfiore (in submission)

Part 3: An Algebraic Approach

Algebraic Approach: Key Elements

R-Lattices

Let *R* be a discrete subring of \mathbb{C} forming a principal ideal domain. Let $N \leq n$. An *R*-lattice of dimension *N* in \mathbb{C}^n is defined as the set of all *R*-linear combinations of *N* linearly independent vectors, i.e.,

$$\Lambda = \{ \mathbf{r} \mathbf{G}_{\Lambda} : \mathbf{r} \in R^{N} \},\$$

where $\mathbf{G}_{\Lambda} \in \mathbb{C}^{N \times n}$ is called a generator matrix for Λ .

 $R = \mathbb{Z}[\omega] \Rightarrow$ Eisenstein lattices; $R = \mathbb{Z}[i] \Rightarrow$ Gaussian lattices

•	٠	•
•	•	•
•	•	•

$$\mathbb{Z}[\omega] \triangleq \{a + b\omega : a, b \in \mathbb{Z}, \omega = e^{i2\pi/3}\}$$
$$\mathbb{Z}[i] \triangleq \{a + bi : a, b \in \mathbb{Z}\}$$
$$\Lambda = \mathbb{Z}[i]$$
$$\Lambda' = 3\mathbb{Z}[i]$$

Algebraic Approach: Key Concepts

Key Concepts

Message space W (with $|W| = |\Lambda/\Lambda'|$) Labeling $\varphi : \Lambda \to W$ (consistent with Λ/Λ') Embedding map $\overline{\varphi} : W \to \Lambda$ such that $\varphi(\overline{\varphi}(\mathbf{w})) = \mathbf{w}$

Algebraic Approach: Key Property

Key Property

If the message space W is chosen carefully, then the labelling φ can be made linear.

In general, W can be chosen as $R/(\pi_1) \times \cdots \times R/(\pi_k)$, where π_1, \ldots, π_k are invariant factors of Λ/Λ' .

132

Algebraic Approach: Key Property

Key Property

If the message space W is chosen carefully, then the labelling φ can be made linear.

In general, W can be chosen as $R/(\pi_1) \times \cdots \times R/(\pi_k)$, where π_1, \ldots, π_k are invariant factors of Λ/Λ' .

$$W = \mathbb{Z}[i]/(3)$$

 $\varphi(a+bi) = (a+bi) \mod 3$

Algebraic Approach: Encoding and Decoding

Encoding and Decoding

Transmitter ℓ sends $\mathbf{x}_{\ell} = \bar{\varphi}(\mathbf{w}_{\ell}) - Q_{\Lambda'}(\bar{\varphi}(\mathbf{w}_{\ell}))$ Receiver computes $\hat{\mathbf{u}} = \varphi(\mathcal{D}_{\Lambda}(\alpha \mathbf{y}))$

Remark: complexity here \approx complexity for point-to-point channels

Algebraic Approach: Error Probability

Error Probability

$$\Pr[\text{error}] = \Pr[\mathcal{D}_{\Lambda}(\mathbf{n}_{\text{eff}}) \notin \Lambda']$$

where $\mathbf{n}_{eff} \triangleq \sum_{\ell} (\alpha h_{\ell} - a_{\ell}) \mathbf{x}_{\ell} + \alpha \mathbf{z}$ is the effective noise. Proof Sketch: $\alpha \mathbf{y} = \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \sum_{\ell} (\alpha h_{\ell} - a_{\ell}) \mathbf{x}_{\ell} + \alpha \mathbf{z} = \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \mathbf{n}_{eff}$

Thus,
$$\mathcal{D}_{\Lambda}(\alpha \mathbf{y}) = \sum_{\ell} a_{\ell} \mathbf{x}_{\ell} + \mathcal{D}_{\Lambda}(\mathbf{n}_{\mathsf{eff}})$$

Therefore, $\hat{\mathbf{u}} = \varphi(\mathcal{D}_{\Lambda}(\alpha \mathbf{y})) = \mathbf{u} + \varphi(\mathcal{D}_{\Lambda}(\mathbf{n}_{\text{eff}}))$

Application: Practical Designs for Short Block Length

Union Bound Estimator (UBE) of the Error Probability

Recall that the effective noise $\mathbf{n}_{eff} = \sum_{\ell} (\alpha h_{\ell} - a_{\ell}) \mathbf{x}_{\ell} + \alpha \mathbf{z}$. If Λ / Λ' admits hypercube shaping, then the UBE is

$$\mathsf{Pr}[\mathsf{error}] \lesssim \mathcal{K}(\Lambda/\Lambda') \exp\left(-\frac{d^2(\Lambda/\Lambda')}{4N_0(|\alpha|^2 + \mathsf{SNR} \|\alpha \mathbf{h} - \mathbf{a}\|^2)}\right)$$

 $K(\Lambda/\Lambda')$: # of the shortest vectors in the set difference $\Lambda - \Lambda'$ $d(\Lambda/\Lambda')$: length of the shortest vectors in the set difference $\Lambda - \Lambda'$

Implications

• minimize $K(\Lambda/\Lambda')$ and maximize $d(\Lambda/\Lambda')$

• minimize
$$oldsymbol{Q}(lpha, \mathbf{a}) riangleq |lpha|^2 + \mathsf{SNR} \| lpha \mathbf{h} - \mathbf{a} \|^2$$

Remark: \mathbf{n}_{eff} has i.i.d. component with variance $N_0 Q(\alpha, \mathbf{a}) \Rightarrow$ minimum variance criterion

Signal-to-Effective-Noise Ratio (SENR)

SENR $\triangleq P/N_0Q(\alpha, \mathbf{a})$

Nominal Coding Gain

$$\mathsf{Pr}[\mathsf{error}] \lesssim \mathcal{K}(\Lambda/\Lambda') \exp\left(-rac{3}{2}rac{d^2(\Lambda/\Lambda')}{\mathcal{V}(\Lambda)^{1/n}}rac{\mathsf{SENR}}{2^{R_{\mathsf{mes}}}}
ight)$$

Thus, $\gamma_c(\Lambda/\Lambda') \triangleq d^2(\Lambda/\Lambda')/V(\Lambda)^{1/n}$ is nominal coding gain

Effective Coding Gain

Setup

- 9-QAM + linear codes over $\mathbb{Z}[i]/(3)$
- Idea: terminated (feedforward) convolutional codes
- Why? better performance-complexity tradeoff
- Low complexity \Rightarrow constraint length $\nu = 1$ or 2
- Block length = 200

Practical Designs via Complex Construction A

