An Algebraic Approach to Physical-Layer Network Coding

Frank R. Kschischang
University of Toronto, Canada

joint work with:
Chen Feng, University of Toronto, Canada
Roberto W. Nóbrega, Federal University of Santa Catarina, Brazil
Danilo Silva, Federal University of Santa Catarina, Brazil

April 18, 2013
WCC, Bergen, Norway

Finite-Field Matrix Channels

Random Linear Network Coding

- Transmitter injects packets: vectors from \mathbb{F}_{q}^{m}, the rows of a matrix X
- Intermediate nodes forward random \mathbb{F}_{q}-linear combinations of packets
- Errors may also be injected, which randomly mix with the legitimate packets
- (Each) receiver gathers as many packets as possible, forming the rows of matrix Y

At any particular receiver:

$$
Y=A X+Z
$$

where: X is $n \times m ; Y, Z$ are $N \times m$; and A is $N \times n$.

A Basic Model

In previous work ${ }^{1}$ we considered a basic stochastic linear matrix channel model:

$$
Y=A X+Z
$$

where

- X and Y are $n \times m$ matrices over \mathbb{F}_{q};
- A is $n \times n$, nonsingular, drawn uniformly at random;
- Z is $n \times m$ with rank t, drawn uniformly at random;
- X, A, and Z are independent.
${ }^{1}$ D. Silva, K., R. Kötter, "Communication over Finite-Field Matrix Channels," IEEE Trans. Inf. Theory, vol. 56, pp. 1296-1305, Mar. 2010.

MAMC: Capacity

Theorem (upper bound)

For $n \leq m / 2$,

$$
C_{\text {MAMC }} \leq(m-n)(n-t)+\log _{q} 4(n+1)(t+1)
$$

Theorem (lower bound)

Assume $n \leq m$. For any $\epsilon \geq 0$, we have

$$
C_{\mathrm{MAMC}} \geq(m-n)(n-t-\epsilon t)-\log _{q} 4-\frac{2 t n m}{q^{1+\epsilon t}}
$$

These upper and lower bounds match when $q \rightarrow \infty$ or $m \rightarrow \infty$ (with n / m and t / n fixed).

MAMC: Capacity

Corollary

For large m or large q,

$$
C_{\mathrm{MAMC}} \approx(m-n)(n-t) .
$$

A Simple Coding Scheme

Strategy: Channel Sounding + Error Trapping

Use channel sounding "inside" and error trapping "outside" (but not the opposite!)

MAMC: A Coding Scheme

First, rewrite the channel model as

$$
Y=A X+Z=A\left(X+A^{-1} Z\right)=A(X+W), \quad \text { where } W=A^{-1} Z
$$

and suppose a "genie" gives the receiver $X+W$.
Let data matrix D be $(n-t) \times(m-n)$.
We have:

$$
X=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & D
\end{array}\right] \quad W=\left[\begin{array}{lll}
W_{1} & W_{2} & W_{3} \\
W_{4} & W_{5} & W_{6}
\end{array}\right]
$$

Assume that rank $W_{1}=t=\operatorname{rank} W(=\operatorname{rank} Z)$. In this case, for some matrix B, we have

$$
W=\left[\begin{array}{ccc}
W_{1} & W_{2} & W_{3} \\
B W_{1} & B W_{2} & B W_{3}
\end{array}\right]
$$

Now convert $X+W$ to reduced row echelon (RRE) form:

$$
\begin{aligned}
& X+W=\left[\begin{array}{ccc}
W_{1} & W_{2} & W_{3} \\
B W_{1} & I+B W_{2} & D+B W_{3}
\end{array}\right] \\
& \xrightarrow{\text { row op. }}\left[\begin{array}{ccc}
I & W_{1}^{-1} W_{2} & W_{1}^{-1} W_{3} \\
B W_{1} & I+B W_{2} & D+B W_{3}
\end{array}\right] \\
& \xrightarrow{\text { row op. }}\left[\begin{array}{ccc}
I & W_{1}^{-1} W_{2} & W_{1}^{-1} W_{3} \\
0 & I & D
\end{array}\right] \\
& \xrightarrow{\text { row op. }}\left[\begin{array}{ccc}
I & 0 & \tilde{W}_{3} \\
0 & I & D
\end{array}\right]=\operatorname{RRE}(X+W) .
\end{aligned}
$$

But we have Y, not $X+W$!

Now convert $X+W$ to reduced row echelon (RRE) form:

$$
\begin{aligned}
& X+W=\left[\begin{array}{ccc}
W_{1} & W_{2} & W_{3} \\
B W_{1} & I+B W_{2} & D+B W_{3}
\end{array}\right] \\
& \xrightarrow{\text { row op. }}\left[\begin{array}{ccc}
I & W_{1}^{-1} W_{2} & W_{1}^{-1} W_{3} \\
B W_{1} & I+B W_{2} & D+B W_{3}
\end{array}\right] \\
& \xrightarrow{\text { row op. }}\left[\begin{array}{ccc}
I & W_{1}^{-1} W_{2} & W_{1}^{-1} W_{3} \\
0 & I & D
\end{array}\right] \\
& \xrightarrow{\text { row op. }}\left[\begin{array}{ccc}
I & 0 & \tilde{W}_{3} \\
0 & I & D
\end{array}\right]=\operatorname{RRE}(X+W) .
\end{aligned}
$$

But we have Y, not $X+W$!

Observation

$Y=A(X+W), A$ is full rank, so Y and $X+W$ have the same row space, which implies that

$$
\operatorname{RRE}(Y)=\operatorname{RRE}(X+W)
$$

Thus, D is exposed by reducing Y to RRE form!

MAMC: A Coding Scheme

- Decoding amounts to performing full Gaussian elimination on the received matrix Y.

Complexity: $\mathcal{O}\left(n^{2} m\right)$ operations in \mathbb{F}_{q} to recover $(n-t)(m-n)$ symbols. Defining $R=(n-t)(m-t) / m n$, we have a complexity of $\mathcal{O}(n / R)$ operations per decoded symbol.

- The scheme fails if W_{1} is not invertible.

The probability of failure falls exponentially (for fixed m) in the number of bits per field-element, or exponentially (for fixed q) in m (assuming fixed aspect ratio of m / n and fixed t / n).

Theorem

This coding scheme can achieve the capacity of the MAMC when either $q \rightarrow \infty$ or $m \rightarrow \infty$.

This Talk:

$$
\begin{gathered}
\text { Generalize } \\
\text { from } \\
\text { finite-field matrix channels } \\
\text { to } \\
\text { finite-ring matrix channels. } \\
\text { Mhy? }
\end{gathered}
$$

> Generalize from
> finite-field matrix channels
> to
> finite-ring matrix channels.

Why?

A: it could be useful for nested-lattice-based physical-layer network coding (LNC), a form of compute-and-forward relaying à la
B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes," IEEE Trans. Inf. Theory, vol. 57, pp. 6463-6486, Oct. 2011.

Compute-and-Forward: Nested Lattices

Nested Lattices

Fine lattice Λ, coarse lattice $\Lambda^{\prime} \subseteq \Lambda$, and lattice quotient $\Lambda / \Lambda^{\prime}$

$$
\mathbf{G}_{\Lambda}=\left[\begin{array}{cc}
\sqrt{3} & 1 \\
0 & 2
\end{array}\right]
$$

$$
\Lambda=\left\{\mathbf{r} \mathbf{G}_{\Lambda}: \mathbf{r} \in \mathbb{Z}^{2}\right\}
$$

$$
\Lambda^{\prime}=3 \Lambda
$$

Compute-and-Forward: Complex Lattices

Complex R-Lattices

Let R be a discrete subring of \mathbb{C} forming a principal ideal domain.
Let $N \leq n$. An R-lattice of dimension N in \mathbb{C}^{n} is defined as the set of all R-linear combinations of N linearly independent vectors, i.e.,

$$
\Lambda=\left\{\mathbf{r} \mathbf{G}_{\Lambda}: \mathbf{r} \in R^{N}\right\}
$$

where $\mathbf{G}_{\Lambda} \in \mathbb{C}^{N \times n}$ is called a generator matrix for Λ.
$R=\mathbb{Z}[\omega] \Rightarrow$ Eisenstein lattices; $R=\mathbb{Z}[i] \Rightarrow$ Gaussian lattices

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

$$
\mathbb{Z}[\omega] \triangleq\left\{a+b \omega: a, b \in \mathbb{Z}, \omega=e^{i 2 \pi / 3}\right\}
$$

$$
\mathbb{Z}[i] \triangleq\{a+b i: a, b \in \mathbb{Z}\}
$$

$$
\Lambda=\mathbb{Z}[i]
$$

$$
\Lambda^{\prime}=3 \mathbb{Z}[i]
$$

Compute-and-Forward: Structure of $\Lambda / \Lambda^{\prime}$

Theorem

$$
\Lambda / \Lambda^{\prime} \cong R /\left\langle\pi_{1}\right\rangle \times \cdots \times R /\left\langle\pi_{k}\right\rangle
$$

for some nonzero, non-unit $\pi_{1}, \ldots, \pi_{k} \in R$ such that $\pi_{1}|\cdots| \pi_{k}$. Moreover, there exists a surjective R-module homomorphism $\varphi: \Lambda \rightarrow R /\left\langle\pi_{1}\right\rangle \times \cdots \times R /\left\langle\pi_{k}\right\rangle$ whose kernel is Λ^{\prime}.

$2+i$	i \bullet	$1+i$ \bullet
2	0	\bullet
\bullet	\bullet	
$2+2 i$	$2 i$	
\bullet	\bullet	$1+2 i$

$$
\begin{gathered}
\Lambda / \Lambda^{\prime} \cong \mathbb{Z}[i] /\langle 3\rangle \\
\varphi(a+b i)=(a+b i) \bmod 3 \\
\varphi^{-1}(c+d i)=(c+d i)+\Lambda^{\prime}
\end{gathered}
$$

Compute-and-Forward: Architecture

$R /\left\langle\pi_{1}\right\rangle \times \cdots \times R /\left\langle\pi_{k}\right\rangle$ is the message space Ω

Encoding

Transmitter ℓ sends $\mathbf{x}_{\ell} \in \Lambda$, a coset representative of $\varphi^{-1}\left(\mathbf{w}_{\ell}\right)$

Decoding

Receiver first recovers $\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}$ from $\alpha \mathbf{y}$; Receiver then maps $\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}$ onto $\sum_{\ell} a_{\ell} \mathbf{w}_{\ell}$ via φ

Remark: $\alpha \mathbf{y}-\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}=\sum_{\ell}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z}$ "effective noise"

Construction Examples

Example 1: [Ordentlich, Zhan, Erez, Gastpar, Nazer, ISIT'11]

- Λ is obtained using Construction A applied to binary ($n=64800, k=54000$) LDPC code C, with mod-4 shaping:

$$
\Lambda=C+2 \mathbb{Z}^{n}, \quad \Lambda^{\prime}=4 \mathbb{Z}^{n}
$$

- Induced message space: $\mathbb{Z}_{4}^{54000} \times \mathbb{Z}_{2}^{10800}$

Example 2: Turbo Lattices [Sakzad, Sadeghi, Panario, Allerton'10]

- Λ is obtained using Construction D applied to nested turbo codes $C_{2}:\left(n=10131, k_{2}=3377\right)$ and $C_{1}:\left(n=10131, k_{1}=5065\right)$;

$$
\Lambda=C_{2}+2 C_{1}+4 \mathbb{Z}^{n}, \quad \Lambda^{\prime}=4 \mathbb{Z}^{n} .
$$

- Induced message space: $\mathbb{Z}_{4}^{3377} \times \mathbb{Z}_{2}^{1688}$

In general, for most practical constructions, we have

$$
\Omega=R /\left\langle\pi^{t_{0}}\right\rangle \times \cdots \times R /\left\langle\pi^{t_{m-1}}\right\rangle, t_{0} \geq \cdots \geq t_{m-1} .
$$

Much Ongoing Work:

B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes," IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463-6486, Oct. 2011.
M. P. Wilson, K. Narayanan, H. D. Pfister, and A. Sprintson, "Joint physical layer coding and network coding for bidirectional relaying," IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5641-5654, Nov. 2010.
N. E. Tunali, K. R. Narayanan, J. J. Boutros, and Y.-C. Huang, "Lattices over Eisenstein integers for compute-and-forward," in Proc. 2012 Allerton Conf. Commun., Control, and Comput., Monticello, IL, Oct. 2012, pp. 33-40.
S. Qifu and J. Yuan, "Lattice network codes based on Eisenstein integers," in Proc. 2012 IEEE Int. Conf. on Wireless and Mobile Comput., Barcelona, Spain, Oct. 2012, pp. 225-231.
A. Osmane and J.-C. Belfiore, "The compute-and-forward protocol: implementation and practical aspects," 2011.
S. Gupta and M. A. Vázquez-Castro, "Physical-layer network coding based on integer-forcing precoded compute-and-forward," 2013.

Chain Rings,

Modules,

Matrices

Commutative Rings with Identity $1 \neq 0$

- Ideals in a ring can be partially ordered by subset inclusion.
- The resulting poset is called the lattice of ideals of the ring.

Chain ring: ideals are linearly ordered. Ex: \mathbb{Z}_{8}.
Principal ideal ring: every ideal gen. by 1 element. Ex: $\mathbb{Z}_{8}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$. Local ring: unique maximal proper ideal. Ex: $\mathbb{Z}_{8}, \mathbb{Z}_{2}[X, Y] /\langle X, Y\rangle^{2}$.

Finite Rings: Important Facts

Proposition

If R is a ring and N is a maximal ideal of R, then R / N is a field.
This is called a residue field.

Proposition

A finite ring is a chain ring if and only if it is both local and principal.

Proposition

Every finite principal ideal ring is a product of finite chain rings.

Finite Chain Rings: The Ideals

$\{0\}=\left\langle\pi^{s}\right\rangle$

Let R be a finite chain ring, where

- $\langle\pi\rangle$ is the unique maximal ideal,
- q is the order of the residue field,
- s is the number of proper ideals.

Proposition

The lattice of ideals of R is

$$
R \supset\langle\pi\rangle \supset\left\langle\pi^{2}\right\rangle \supset \cdots \supset\left\langle\pi^{s-1}\right\rangle \supset\left\langle\pi^{s}\right\rangle=\{0\} .
$$

We have $\left|\left\langle\pi^{i}\right\rangle\right|=q^{s-i}$; in particular $|R|=q^{s}$.

Notation: (q, s) chain ring.

Finite Chain Rings: Examples

The following are two non-isomorphic $(q=2, s=2)$ chain rings.

In other words, specifying q and s does not uniquely specify the chain ring.

Finite Chain Rings: The π-adic Decomposition

Let R be a (q, s) chain ring.

Proposition

Fix the following:

- $\pi \in R$, a generator for the maximal ideal $\langle\pi\rangle$.
- $\mathcal{R}(R, \pi)$, a complete set of residues with respect to π.

Then every element $r \in R$ can be written uniquely as

$$
r=r_{0}+r_{1} \pi+r_{2} \pi^{2}+\cdots+r_{s-1} \pi^{s-1}
$$

where $r_{i} \in \mathcal{R}(R, \pi)$.
This is known as the π-adic decomposition.

Element Degree

Definition

The degree, $\operatorname{deg}(r)$, of a nonzero element $r \in R^{*}$, where

$$
r=r_{0}+r_{1} \pi+\cdots+r_{s-1} \pi^{s-1}
$$

is defined as the least index j for which $r_{j} \neq 0$.

- by convention, $\operatorname{deg}(0)=s$
- units have degree zero
- elements of the same degree are associates
- a divides b if and only if $\operatorname{deg}(a) \leq \operatorname{deg}(b)$
- $\operatorname{deg}(a+b) \geq \min \{\operatorname{deg}(a), \operatorname{deg}(b)\}$

Shapes

An s-shape $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{s}\right)$ is a sequence of non-decreasing non-negative integers, i.e., $0 \leq \mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{s}$. We denote by $|\mu|$ the sum of its components, i.e., $|\mu|=\sum_{i=1}^{s} \mu_{i}$.

Example: $\mu=(4,6,8)$

```
* * * *
****** }|(4,6,8)|=1
* * * * * * * *
```

For convenience, we will sometimes identify the integer t with the s-shape (t, \ldots, t).
An s-shape $\kappa=\left(\kappa_{1}, \ldots, \kappa_{s}\right)$ is said to be a subshape of $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$, written $\kappa \preceq \mu$, if $\kappa_{i} \leq \mu_{i}$ for all $i=1, \ldots, s$.

$$
\begin{array}{llll}
* & * & * & * \\
* & * & * & *
\end{array} *_{*} \quad(4,4,5) \preceq(4,6,8)
$$

From Shape to Module

When R is a finite chain ring, an R-module is always isomorphic to a direct product of various ideals of R; this structure can be described by a shape.

Definition

Let R be a (q, s) chain ring with maximal ideal $\langle\pi\rangle$. For any s-shape μ, we define the R-module R^{μ} as

$$
R^{\mu} \triangleq \underbrace{\langle 1\rangle \times \cdots \times\langle 1\rangle}_{\mu_{1}} \times \underbrace{\langle\pi\rangle \times \cdots \times\langle\pi\rangle}_{\mu_{2}-\mu_{1}} \times \cdots \times \underbrace{\left\langle\pi^{s-1}\right\rangle \times \cdots \times\left\langle\pi^{s-1}\right\rangle}_{\mu_{s}-\mu_{s-1}} .
$$

$R^{\left(\mu_{1}, \ldots, \mu_{s}\right)}$ is a collection of μ_{s}-tuples over R, whose π-adic coordinate array must satisfy degree constraints specified by $\left(\mu_{1}, \ldots, \mu_{s}\right)$.

Note that $\left|R^{\mu}\right|=q^{|\mu|}$.

$$
s=3, \mu=(4,6,8)
$$

From Module to Shape

Conversely, we have the following theorem (see, e.g., $[\mathrm{HLOO}]^{2}$).

Theorem

For any finite R-module M over a (q, s) chain ring R, there is a unique s-shape μ such that $M \cong R^{\mu}$.

- We call the unique shape μ associated with a module M the shape of M, and write $\mu=$ shape M.
- If M^{\prime} is a submodule of M, then shape $M^{\prime} \preceq$ shape M, i.e., the shape of a submodule is a subshape of the module.

For example, the module spanned by 1111 and 0022 over \mathbb{Z}_{8} has shape $(1,2,2)$. This module contains $2^{5} 4$-tuples, and is isomorphic to $\langle 1\rangle \times\langle 2\rangle$.
${ }^{2}$ T. Honold and I. Landjev, "Linear Codes over Finite Chain Rings," The Electronic J. of Combinatorics, vol. 7, 2000.

Counting Submodules

It is also known [HLOO] that the number of submodules of R^{μ} whose shape is κ is given by

$$
\llbracket \begin{align*}
& \mu \tag{1}\\
& \kappa
\end{align*} \rrbracket_{q}=\prod_{i=1}^{s} q^{\left(\mu_{i}-\kappa_{i}\right) \kappa_{i-1}}\left[\begin{array}{l}
\mu_{i}-\kappa_{i-1} \\
\kappa_{i}-\kappa_{i-1}
\end{array}\right]_{q}
$$

where

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q} \triangleq \prod_{i=0}^{k-1} \frac{q^{m}-q^{i}}{q^{k}-q^{i}}
$$

is the Gaussian coefficient.
In particular, when the chain length $s=1, R$ becomes the finite field \mathbb{F}_{q} of q elements, and $\left[\begin{array}{c}\mu \\ \kappa\end{array}\right]_{q}$ becomes $\left[\begin{array}{c}\mu_{1} \\ \kappa_{1}\end{array}\right]_{q}$, which is the number of κ_{1}-dimensional subspaces of $\mathbb{F}_{q}^{\mu_{1}}$.

Matrices over Finite Chain Rings

Notation for matrices:

- $R^{n \times m}$: the set of all $n \times m$ matrices with entries from ring R.
- $U \in R^{n \times n}$ is invertible if $U V=V U=I_{n}$ for some $V \in R^{n \times n}$, where I_{n} denotes the $n \times n$ identity matrix. The set of invertible matrices in $R^{n \times n}$ forms the general linear group $G L_{n}(R)$ under multiplication.
- $A, B \in R^{n \times m}$ are left-equivalent if there exists a matrix $U \in \mathrm{GL}_{n}(R)$ such that $U A=B$.
- $A, B \in R^{n \times m}$ are equivalent if there exist matrices $U \in \mathrm{GL}_{n}(R)$ and $V \in \mathrm{GL}_{m}(R)$ such that $U A V=B$.
- $D \in R^{n \times m}$ is a diagonal matrix if $D[i, j]=0$ whenever $i \neq j$. A diagonal matrix need not be square.

$$
\left[\begin{array}{llll}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0
\end{array}\right] \quad\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right]
$$

Smith Normal Form

Definition

A diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{r}\right) \in R^{n \times m}$ is called a Smith normal form of $A \in R^{n \times m}$, if D is equivalent to A and $d_{1}\left|d_{2}\right| \cdots \mid d_{r}$ in R, where $r=\min \{n, m\}$.

Every matrix over a PIR (in particular, a finite chain ring) has a Smith normal form whose diagonal entries are unique up to equivalence of associates.
Over $R=\mathbb{Z}_{8}$

$$
A=\left[\begin{array}{llll}
4 & 6 & 2 & 1 \\
0 & 0 & 0 & 2 \\
2 & 4 & 6 & 1 \\
2 & 0 & 2 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{llll}
0 & 2 & 2 & 1 \\
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{V}
$$

with invertible U and V. Since $1|2| 4 \mid 0$ in \mathbb{Z}_{8}, S is the Smith normal form of A.

Row and Column Span

- For $A \in R^{n \times m}$, denote by row A and $\operatorname{col} A$ the row span and column span of A, respectively.
- From the Smith normal form, it is easy to see that row $A \cong \operatorname{col} A$.
- Two matrices $A, B \in R^{n \times m}$ are left-equivalent if and only if row $A=$ row B.
- Two matrices $A, B \in R^{n \times m}$ are equivalent if and only if row $A \cong$ row B.

Shape of a Matrix

Definition

The shape of a matrix A is defined as the shape of the row span of A, i.e.,

$$
\text { shape } A=\text { shape }(\text { row } A)
$$

Clearly, shape $A=$ shape $(\operatorname{col} A)$. shape $A=\mu$ if and only if the Smith normal form of A is given by

$$
\operatorname{diag}(\underbrace{1, \ldots, 1}_{\mu_{1}}, \underbrace{\pi, \ldots, \pi}_{\mu_{2}-\mu_{1}}, \ldots, \underbrace{\pi^{s-1}, \ldots, \pi^{s-1}}_{\mu_{s}-\mu_{s-1}}, \underbrace{0, \ldots, 0}_{r-\mu_{s}})
$$

where $r=\min \{n, m\}$.
A matrix $U \in R^{n \times n}$ is invertible if and only if shape $U=(n, \ldots, n)$.

Example

If A has Smith normal form $D=\operatorname{diag}(1,2,4,0)$ over \mathbb{Z}_{8} then shape $A=(1,2,3)$.

Properties of Matrix Shape

Let $A \in R^{n \times m}$ and $B \in R^{m \times k}$. Then

- shape $A=$ shape A^{T}, where A^{T} is the transpose of A.
- For any $P \in \mathrm{GL}_{n}(R), Q \in \mathrm{GL}_{m}(R)$, shape $A=$ shape $P A Q$.
- shape $A B \preceq$ shape A, shape $A B \preceq$ shape B.
- For any submatrix C of A, shape $C \preceq$ shape A.

Row Canonical Form

Let R be a (q, s) chain ring with maximal ideal $\langle\pi\rangle$, fixing a complete set of residues $\mathcal{R}(R, \pi)$ (including 0), and for $1<\ell<s$, fixing

$$
\mathcal{R}\left(R, \pi^{\ell}\right)=\left\{\sum_{i=0}^{\ell-1} a_{i} \pi^{i}: a_{0}, \ldots, a_{\ell-1} \in \mathcal{R}(R, \pi)\right\}
$$

Example: $R=\mathbb{Z}_{8}$

If $R=\mathbb{Z}_{8}$, with $\pi=2$, we might fix $\mathcal{R}(R, 2)=\{0,1\}$, so that $\mathcal{R}(R, 4)=\{0,1,2,3\}$.

Row Canonical Form (cont'd)

In a matrix A :

- The element $A[i, j]$ occurs above $A\left[i^{\prime}, j^{\prime}\right]$ if $i<i^{\prime}$. (Equivalently, $A\left[i^{\prime}, j^{\prime}\right]$ occurs below $A[i, j]$.)
- The element $A[i, j]$ occurs earlier than $A\left[i^{\prime}, j^{\prime}\right]$ if $j<j^{\prime}$. (Equivalently, $A\left[i^{\prime}, j^{\prime}\right]$ occurs later than $A[i, j]$.)
- The first element in row i with property P occurs earlier than any other element in row i with property P.
- The pivot of a nonzero row of A is the first entry among the entries having least degree in that row. For example, the pivot of [0 462 2] over \mathbb{Z}_{8} is the element 6 .

Row Canonical Form (cont'd)

Definition

A matrix A is in row canonical form if it satisfies the following conditions.
(1) Nonzero rows of A are above any zero rows.
(2) If A has two pivots of the same degree, the one that occurs earlier is above the one that occurs later. If A has two pivots of different degree, the one with smaller degree is above the one with larger degree.
(3) Every pivot is of the form π^{ℓ} for some $\ell \in\{0, \ldots, s-1\}$.
(4) For every pivot (say π^{ℓ}), all entries below and in the same column as the pivot are zero, and all entries above and in the same column as the pivot are elements of $\mathcal{R}\left(R, \pi^{\ell}\right)$.

For example, over \mathbb{Z}_{8},

$$
A=\left[\begin{array}{llll}
0 & 2 & 0 & \overline{1} \\
\overline{2} & 2 & 0 & 0 \\
0 & 0 & \overline{2} & 0 \\
0 & \overline{4} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

is in row
canonical form.

Basic Facts

Let $A \in R^{n \times m}$ be a matrix in row canonical form, let p_{k} be the pivot of the k th row, let c_{k} be the index of the column containing p_{k}. (If the k th row is zero, let $p_{k}=0$ and $c_{k}=0$.) Let $d_{k}=\operatorname{deg}\left(p_{k}\right)$, and let $w=\left(w_{1}, \ldots, w_{m}\right)$ be an arbitrary element of row A.
(1) Any column of A contains at most one pivot.
(2) If A has more than one row, deleting a row of A results in a matrix also in row canonical form.
(3) $i \geq k$ implies $\operatorname{deg}(A[i, j]) \geq d_{k}$.
(4) $\left(i \geq k\right.$ and $\left.j<c_{k}\right)$ or $\left(i>k\right.$ and $\left.j \leq c_{k}\right)$ implies $\operatorname{deg}(A[i, j])>d_{k}$.
(5) p_{1} divides $w_{1}, w_{2}, \ldots, w_{m}$.
(6) $j<c_{1}$ implies $\operatorname{deg}\left(w_{j}\right)>d_{1}$.

Reduction to Row Canonical Form

PivotSelection: given a submatrix, return the row and column index of the earliest occurring pivot of least possible degree; otherwise declare the submatrix to be zero.
Given a matrix A :

- Step $k=1$: apply PivotSelection to A; move the selected row to row 1 , normalize (make sure the first pivot is of the form π^{ℓ}), and cancel all elements below the pivot (which must all be multiples of the first pivot). Call the resulting matrix A_{1}, and increment k.
- For $k \geq 2$, apply PivotSelection to the rows of A_{k-1}, excluding the first $k-1$ rows. If no pivot can be found, stop; otherwise, move the selected row to row k, normalize to π^{ℓ}, cancel all elements below the pivot, and reduce all elements above the pivot to elements of $\mathcal{R}\left(R, \pi^{\ell}\right)$. Call the resulting matrix A_{k}, and increment k.

Row Canonical Form (cont'd)

Theorem

For any $A \in R^{n \times m}$, the algorithm described above computes a row canonical form of A.

Theorem

For any $A \in R^{n \times m}$, the row canonical form of A is unique.

Example:

$$
\begin{aligned}
A & =\left[\begin{array}{llll}
4 & 6 & 2 & \overline{1} \\
0 & 0 & 0 & 2 \\
2 & 4 & 6 & 1 \\
2 & 0 & 2 & 1
\end{array}\right] \rightarrow A_{1}=\left[\begin{array}{llll}
4 & 6 & 2 & 1 \\
0 & 4 & 4 & 0 \\
\overline{6} & 6 & 4 & 0 \\
6 & 2 & 0 & 0
\end{array}\right] \rightarrow \\
A_{1}^{\prime} & =\left[\begin{array}{llll}
4 & 6 & 2 & 1 \\
\overline{2} & 2 & 4 & 0 \\
0 & 4 & 4 & 0 \\
6 & 2 & 0 & 0
\end{array}\right] \rightarrow A_{2}=\left[\begin{array}{llll}
0 & 2 & 2 & 1 \\
2 & 2 & 4 & 0 \\
0 & \overline{4} & 4 & 0 \\
0 & 4 & 4 & 0
\end{array}\right] \rightarrow \\
A_{3} & =\left[\begin{array}{llll}
0 & 2 & 2 & \overline{1} \\
\overline{2} & 2 & 4 & 0 \\
0 & \overline{4} & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { which is in row canonical form. }
\end{aligned}
$$

Matrix Shape via Row Canonical Form

Let B be the row canonical form of $A \in R^{n \times m}$ with k nonzero rows. Let p_{i} be the pivot in the i th row of B, where $i \in\{1, \ldots, k\}$. Let $r=\min \{n, m\}$. Clearly, $k \leq r$. Then the Smith normal form of A is given by

$$
\operatorname{diag}(p_{1}, \ldots, p_{k}, \underbrace{0, \ldots, 0}_{r-k}) \in R^{n \times m},
$$

from which the shape of A is readily available.
Example:

$$
A=\left[\begin{array}{llll}
4 & 6 & 2 & 1 \\
0 & 0 & 0 & 2 \\
2 & 4 & 6 & 1 \\
2 & 0 & 2 & 1
\end{array}\right] \rightarrow B=\left[\begin{array}{llll}
0 & 2 & 2 & 1 \\
2 & 2 & 4 & 0 \\
0 & 4 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

over \mathbb{Z}_{8}. Since B is the row canonical form of A, we see that the Smith normal form is $\operatorname{diag}(1,2,4,0)$, and hence shape $A=(1,2,3)$.

π-adic Decomposition

Let $R^{n \times \mu}$ denote the set of matrices in $R^{n \times m}$ whose rows are elements of R^{μ}. Every matrix X in $R^{n \times \mu}$ decomposes according to its π-adic decomposition as

$$
X=X_{0}+\pi X_{1}+\cdots+\pi^{s-1} X_{s-1}
$$

with each auxiliary matrix X_{i}
($i=0, \ldots, s-1$) satisfying:
(1) $X_{i}\left[1: n, 1: \mu_{i+1}\right]$ is an arbitrary matrix over $\mathcal{R}(R, \pi)$, and
(2) all other entries in X_{i} are zero.

Example: $n=6, \mu=(4,6,8)$.

Row Canonical Forms in $\mathcal{T}_{k}\left(R^{n \times \mu}\right)$

Let $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ denote the set of matrices in $R^{n \times \mu}$ whose shape is κ, where $\kappa \preceq n$ and $\kappa \preceq \mu$.
The row canonical forms in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ are in one-to-one correspondence with the submodules of R^{μ} having shape κ; thus there are $\left[\begin{array}{c}\mu \\ \kappa\end{array}\right]_{q}$ such row canonical forms.

Example:

Let $R=\mathbb{Z}_{4}$, and let $n=2, \mu=(2,3), \kappa=(1,2)$. Then $\left[\begin{array}{c}\mu \\ \kappa\end{array}\right]_{q}=18$.
These 18 row canonical forms can be classified into 4 categories based on the positions of their pivots:

Clearly, the first category, whose pivots occur as early as possible, contains a significant portion of all possible row canonical forms.

Principal RCFs - The "Thick Cell"

Definition

A row canonical form in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ is called principal if its diagonal entries $d_{1}, d_{2}, \ldots, d_{r}(r=\min \{n, m\})$ have the following form:

All principal RCFs in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ can be constructed via a π-adic decomposition:

Illustration of the construction of principal row canonical forms for $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ with $s=3, n=6, \mu=(4,6,8)$, and $\kappa=(2,3,4)$.

Counting Principal RCFs in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$

Note that the number of principal row canonical forms in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ is

$$
P_{q}(\mu, \kappa)=q^{\sum_{i=1}^{s} \kappa_{i}\left(\mu_{i}-\kappa_{i}\right)}
$$

The number of row canonical forms in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ in total is

$$
\left.\llbracket \begin{array}{l}
\mu \\
\kappa
\end{array}\right]_{q}=\prod_{i=1}^{s} q^{\left(\mu_{i}-\kappa_{i}\right) \kappa_{i-1}}\left[\begin{array}{l}
\mu_{i}-\kappa_{i-1} \\
\kappa_{i}-\kappa_{i-1}
\end{array}\right]_{q}
$$

Since $q^{k(m-k)} \leq\left[\begin{array}{c}m \\ k\end{array}\right]_{q}<4 q^{k(m-k)}$, we have

$$
1 \leq \frac{\llbracket \begin{array}{c}
\mu \\
\kappa
\end{array} \rrbracket_{q}}{P_{q}(\mu, \kappa)}<4^{s}
$$

i.e., the number of principal RCFs in $\mathcal{T}\left(R^{n \times \mu}\right)$ grows at the same rate as the number of RCFs in total.

Counting All Matrices in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$

We can partition the matrices in $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ based on their row canonical forms: two matrices belong to the same class if and only if they have the same row canonical form.

- The number of classes is $\left[\begin{array}{c}\mu \\ \kappa\end{array} \rrbracket_{q}\right.$.
- The number of matrices in each class is

$$
\left|R^{n \times \kappa}\right| \prod_{i=0}^{\kappa_{s}-1}\left(1-q^{i-n}\right)=q^{n|\kappa|} \prod_{i=0}^{\kappa_{s}-1}\left(1-q^{i-n}\right)=
$$

- It follows that

$$
\left|\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)\right|=q^{n|\kappa|} \prod_{i=0}^{\kappa_{s}-1}\left(1-q^{i-n}\right) \llbracket\left[\begin{array}{l}
\mu \\
\kappa
\end{array} \rrbracket_{q}\right.
$$

Matrix Channels over Finite Chain Rings

Let R be a (q, s) chain ring, and let μ be an s-shape. We think of R^{μ} as the "packet space" associated with a network. The length, m, of each packet is given by μ_{s}.

- The transmitter sends n packets, each constrained to be an element of R^{μ}. These form the rows of the transmitted matrix $X \in R^{n \times \mu}$.
- The receiver gathers N packets, each also an element of R^{μ}. These form the rows of the received matrix $Y \in R^{N \times \mu}$.
- Noise is modelled by the injection of t packets into the network, each also an element of R^{μ}. These form the rows of the noise matrix $Z \in R^{t \times \mu}$.
- In general, we have

$$
Y=A X+B Z
$$

B
for some transfer matrices $A \in R^{N \times n}$ and $B \in R^{N \times t}$.

Capacity of Matrix Channels over Finite Chain Rings

Our model is $Y=A X+B Z$.

- A well-defined discrete memoryless channel with input alphabet $R^{n \times \mu}$, output alphabet $R^{N \times \mu}$ and channel transition probability $p_{Y \mid X}$ is obtained once a joint distribution for $p_{Z, A, B \mid X}$ is specified.
- The capacity of this channel is given, as usual, by

$$
C=\max _{p_{X}} I(X ; Y)
$$

where p_{X} is the input distribution. (We will take logarithms to base q, so the capacity is given in q-qary symbols per channel use.)

Asymptotic Capacity, \bar{C}

How does capacity scale with packet length?
Given a channel with a given n, N, μ, and t, we define the k th extension as the channel in which the transmitter sends kn packets of shape $k \mu$, the receiver gather $k N$ packets of this shape, the noise matrix has $k t$ rows, and the channel law is suitably generalized, giving capacity C_{k}.

Definition

We define the asymptotic capacity as

$$
\bar{C}=\lim _{k \rightarrow \infty} \frac{1}{(k n)|k \mu|} C_{k}=\frac{1}{n|\mu|} \lim _{k \rightarrow \infty} \frac{C_{k}}{k^{2}} .
$$

Note that \bar{C} is normalized such that $\bar{C}=1$ if the channel is noiseless (i.e., $A=I$ and $Z=0$).

The Independent Transfer Model

Let τ be an s-shape such that $\tau \preceq t, \mu$.
We study the case where:

- the transfer matrix A is uniform over $\mathrm{GL}_{n}(R)$ (in particular,

$$
N=n),
$$

- B is uniform over $\mathcal{T}_{t}\left(R^{n \times t}\right)$,
- Z is uniform over $\mathcal{T}_{\tau}\left(R^{t \times \mu}\right)$,
- X, A, B and Z are statistically independent.

In this case we can re-write the channel model as

$$
Y=A\left(X+A^{-1} B Z\right)=A(X+W),
$$

where $A \in \mathrm{GL}_{n}(R)$ and $W \triangleq A^{-1} B Z \in \mathcal{T}_{\tau}\left(R^{n \times \mu}\right)$ are chosen
 uniformly at random and independently from any other variables.

MMC: Model

First warmup problem

The multiplicative matrix channel (MMC):

$$
Y=A X
$$

where

- $X, Y \in R^{n \times \mu}$;
- $A \sim \operatorname{Unif}\left[G L_{n}(R)\right] ;$
- A and X are independent.

MMC: Exact Capacity

It is easy to find the capacity of a channel defined by a group action.

- Let \mathcal{G} be a finite group that acts on a finite set \mathcal{S}.
- Consider a channel with input $X \in \mathcal{S}$, output $Y \in \mathcal{S}$ and channel law $Y=A X$, where $A \sim \operatorname{Unif}[\mathcal{G}]$ and A and X are independent.
- The capacity of this channel is

$$
C=\log |\mathcal{S} / \mathcal{G}|
$$

where $|\mathcal{S} / \mathcal{G}|$ is the number of orbits of the action.

- One capacity-achieving input distribution is to sample uniformly over a complete system of orbit-representatives.

MMC: Exact Capacity

In the case of the MMC,

- $\mathrm{GL}_{n}(R)$ acts on $R^{n \times \mu}$ by left-multiplication.
- The orbits are the sets of matrices that share the same row module.
- The number of such orbits is the number of submodules of R^{μ} with shape $\preceq n, \mu$.

Theorem

The capacity of the MMC, in q-ary symbols per channel use, is given by

$$
C_{M M C}=\log _{q} \sum_{\lambda \preceq n, \mu} \llbracket\left[\begin{array}{l}
\mu \\
\lambda
\end{array}\right]_{q} .
$$

A capacity-achieving code $\mathcal{C} \subseteq R^{n \times \mu}$ consists of all possible row canonical forms in $R^{n \times \mu}$.
(This scheme encodes information in the choice of submodules, generalizing the "transmission via subspaces" approach of [KK08].)

MMC: Asymptotic Capacity

The capacity C_{MMC} is bounded by

$$
\begin{equation*}
\sum_{i=1}^{s} \kappa_{i}\left(\mu_{i}-\kappa_{i}\right) \leq C_{\mathrm{MMC}} \leq \sum_{i=1}^{s} \kappa_{i}\left(\mu_{i}-\kappa_{i}\right)+\log _{q} 4^{s}\binom{n+s}{s} \tag{2}
\end{equation*}
$$

where $\kappa_{i}=\min \left\{n,\left\lfloor\mu_{i} / 2\right\rfloor\right\}$.

Theorem

$$
\bar{C}_{M M C}=\frac{\sum_{i=1}^{s} \kappa_{i}\left(\mu_{i}-\kappa_{i}\right)}{n|\mu|}
$$

where $\kappa_{i}=\min \left\{n,\left\lfloor\mu_{i} / 2\right\rfloor\right\}$.
The choice of subshape κ essentially maximizes the number of principal row canonical forms having fixed subshape.
Thus, asymptotically, capacity can be achieved by always transmitting principal row canonical forms with a fixed subshape!

MMC: Encoding and Decoding

Let $\kappa=\left(\kappa_{1}, \ldots, \kappa_{s}\right)$ with $\kappa_{i}=\min \left\{n,\left\lfloor\mu_{i} / 2\right\rfloor\right\}$.

- Encoding: choose the input matrix X from the set of principal RCFS for $\mathcal{T}_{\kappa}\left(R^{n \times \mu}\right)$ using the π-adic decomposition given earlier. The encoding rate is

$$
R_{\mathrm{MMC}}=\sum_{i=1}^{s} \kappa_{i}\left(\mu_{i}-\kappa_{i}\right)
$$

- Decoding: upon receiving $Y=A X$, the decoder simply computes the row canonical form of Y. The decoding is always correct by the uniqueness of the row canonical form.
This coding scheme achieves the asymptotic capacity $\bar{C}_{\text {MMC }}$.

AMC: Model

Second warmup problem

The additive matrix channel (AMC):

$$
Y=X+W
$$

where

- $X, Y \in R^{n \times \mu}$;
- $W \sim \operatorname{Unif}\left[\mathcal{T}_{\tau}\left(R^{n \times \mu}\right)\right]$;
- W and X are independent.

AMC: Exact Capacity

The AMC is an example of a discrete symmetric channel.
Theorem
The capacity of the AMC, in q-ary symbols per channel use, is given by

$$
C_{A M C}=\log _{q}\left|R^{n \times \mu}\right|-\log _{q}\left|\mathcal{T}_{\tau}\left(R^{n \times \mu}\right)\right|,
$$

achieved by the uniform input distribution.

AMC: Asymptotic Capacity

The capacity $C_{\text {AMC }}$ is bounded by

$$
\begin{gathered}
\sum_{i=1}^{s}\left(n-\tau_{i}\right)\left(\mu_{i}-\tau_{i}\right)-\log _{q} 4^{s} \prod_{i=0}^{\tau_{s}-1}\left(1-q^{i-n}\right) \\
<C_{\mathrm{AMC}}< \\
\sum_{i=1}^{s}\left(n-\tau_{i}\right)\left(\mu_{i}-\tau_{i}\right)-\log _{q} \prod_{i=0}^{\tau_{s}-1}\left(1-q^{i-n}\right)
\end{gathered}
$$

Theorem

The asymptotic capacity $\bar{C}_{A M C}$ is given by

$$
\bar{C}_{A M C}=\frac{\sum_{i=1}^{s}\left(n-\tau_{i}\right)\left(\mu_{i}-\tau_{i}\right)}{n|\mu|} .
$$

AMC: Error-trapping Encoding

We focus on the special case when $\tau=t=(t, \ldots, t)$. Set $v \geq t$ and transmit a matrix X of the form

$$
X=\left[\begin{array}{cc}
0 & 0 \\
0 & U_{(n-v) \times(m-v)}
\end{array}\right]
$$

Clearly

$$
R_{\mathrm{AMC}}=\sum_{i=1}^{s}(n-v)\left(\mu_{i}-v\right)
$$

AMC: Error-trapping Decoding

Write

$$
W=\left[\begin{array}{ll}
W_{1} & W_{2} \\
W_{3} & W_{4}
\end{array}\right]
$$

Suppose shape $W_{1}=t$. Then, since shape $W=t$ also, the pivots of W are entirely contained in W_{1}. Since the row canonical form of W has t nonzero rows, this means that the upper rows of W can cancel the lower rows, i.e., for some matrix V we have

$$
\left[\begin{array}{ll}
l & 0 \\
V & I
\end{array}\right]\left[\begin{array}{ll}
W_{1} & W_{2} \\
W_{3} & W_{4}
\end{array}\right]=\left[\begin{array}{cc}
W_{1} & W_{2} \\
0 & 0
\end{array}\right]
$$

Indeed, V can be chosen so that $V W_{1}=-W_{3}$, which automatically forces $V W_{2}=-W_{4}$ (since if $V W_{2}+W_{4} \neq 0, W$ would have pivots outside of W_{1}).
Applying this transformation to $Y=X+W$ yields

$$
\left[\begin{array}{ll}
l & 0 \\
V & 1
\end{array}\right]\left[\begin{array}{lc}
W_{1} & W_{2} \\
W_{3} & U+W_{4}
\end{array}\right]=\left[\begin{array}{cc}
W_{1} & W_{2} \\
0 & U
\end{array}\right],
$$

exposing the user's data matrix U.

AMC: Error-trapping Decoding (cont'd)

In summary:

- The decoder observes W_{1}, W_{2}, and W_{3} thanks to the error traps.
- If shape $W_{1}=t$, then the decoder applies the transformation on the previous slide to expose U.
- If shape $W_{1} \neq t$, a decoding failure (detected error) is declared. The probability of decoding failure $P_{f}=P$ shape $\left.W_{1} \neq t\right]$ is bounded as

$$
P_{f}<\frac{2 t}{q^{1+v-t}}
$$

If we set v such that $v-t \rightarrow \infty$, and $\frac{v-t}{m} \rightarrow 0$, as $m \rightarrow \infty$, then we have $P_{f} \rightarrow 0$ and $\bar{R}_{\mathrm{AMC}}=\frac{R_{\mathrm{AMC}}}{n|\mu|} \rightarrow \bar{C}_{\mathrm{AMC}}$.

Theorem

This coding scheme can achieve the asymptotic capacity of the AMC for the special case when $\tau=t$.

AMMC: Model

Now to the main event:

The additive-multiplicative matrix channel (AMMC):

$$
Y=A(X+W)
$$

where

- $X, Y \in R^{n \times \mu}$;
- $W \sim \operatorname{Unif}\left[\mathcal{T}_{\tau}\left(R^{n \times \mu}\right)\right]$;
- $A \sim \operatorname{Unif}\left[\mathrm{GL}_{n}(R)\right]$;
- A, X and W are independent.

Remark: This model is statistically identical to $Y=A X+Z$, where $Z \sim \operatorname{Unif}\left[\mathcal{T}_{\tau}\left(R^{n \times \mu}\right)\right]$

AMMC: Upper Bound on Capacity

Theorem

The capacity of the AMMC, in q-ary symbols per channel use, is upper-bounded by

$$
\begin{aligned}
& C_{A M M C} \leq \sum_{i=1}^{s}\left(\mu_{i}-\xi_{i}\right) \xi_{i}+\sum_{i=1}^{s}\left(n-\mu_{i}\right) \tau_{i}+2 s \log _{q} 4+\log _{q}\binom{n+s}{s} \\
& +\log _{q}\binom{\tau_{s}+s}{s}-\log _{q} \prod_{i=0}^{\tau_{s}-1}\left(1-q^{i-n}\right), \text { where } \xi_{i}=\min \left\{n,\left\lfloor\mu_{i} / 2\right\rfloor\right\}
\end{aligned}
$$

In particular, when $\mu \succeq 2 n$, the upper bound reduces to

$$
\begin{aligned}
& C_{\mathrm{AMMC}} \leq \sum_{i=1}^{s}\left(n-\tau_{i}\right)\left(\mu_{i}-n\right)+2 s \log _{q} 4 \\
&+\log _{q}\binom{n+s}{s}+\log _{q}\binom{\tau_{s}+s}{s}-\log _{q} \prod_{i=0}^{\tau_{s}-1}\left(1-q^{i-n}\right)
\end{aligned}
$$

AMMC: Asymptotic Capacity

Theorem

When $\mu \succeq 2 n$, the asymptotic capacity $\bar{C}_{A M M C}$ is upper-bounded by

$$
\bar{C}_{A M M C} \leq \frac{\sum_{i=1}^{s}\left(n-\tau_{i}\right)\left(\mu_{i}-n\right)}{n|\mu|}
$$

AMMC: Coding Scheme

We again focus on the special case when $\tau=t$, and combine the two strategies for the MMC and the AMC.
To encode, construct X as

$$
X=\left[\begin{array}{ll}
0 & 0 \\
0 & \bar{X}
\end{array}\right]
$$

where \bar{X} is chosen from the set of principal row canonical forms for $\mathcal{T}_{\kappa}\left(R^{(n-v) \times(\mu-v)}\right)$ by the previous construction.

We have $R_{\text {AMMC }}=\sum_{i=1}^{s} \kappa_{i}\left(\mu_{i}-v-\kappa_{i}\right)$. In particular, when $\mu \succeq 2 n$, we have $\left\lfloor\left(\mu_{i}-v\right) / 2\right\rfloor \geq n-v$ for all i. Thus, $\kappa_{i}=n-v$ for all i, and the encoding rate is $R_{\text {AMMC }}=\sum_{i=1}^{s}(n-v)\left(\mu_{i}-n\right)$.

AMMC: Coding Scheme (cont'd)

To decode, we must recover \bar{X} from $Y=A(X+W)$.
If we had $X+W$, we could use the error-trapping decoder to recover

$$
\left[\begin{array}{cc}
W_{1} & W_{2} \\
0 & \bar{X}
\end{array}\right]
$$

But we have Y, not $X+W$. However, since A is invertible, $\operatorname{RCF}(Y)=\operatorname{RCF}(X+W)$, and one easily sees that

$$
\operatorname{RCF}(X+W)=\left[\begin{array}{cc}
\bar{W}_{1} & \bar{W}_{2} \\
0 & \bar{X} \\
0 & 0
\end{array}\right]
$$

where the bottom $v-t$ rows are all zero.
In summary:

- The decoder first computes $\operatorname{RCF}(Y)$.
- It then checks the condition shape $W_{1}=t$.
- If the condition does not hold, a decoding failure is declared, otherwise the decoder outputs \bar{X}.

Conclusions

- Nested-lattice-based physical layer network coding naturally transforms wireless multiple-access channels with random fading into random linear network coding channels.
- The algebraic structure of $\Lambda / \Lambda^{\prime}$ is that of a module over a ring.
- In many cases, the ring is a finite-chain ring, so end-to-end error control (for random errors) can be handled using a matrix-channel approach, with simple and asymptotically efficient coding schemes.

Open Problems

- Relaxing the assumption on A
- What if A is not invertible?
- Relaxing the assumption on W
- What if W has shape other than $\tau=t$?
- Adversarial error models
- Always correcting errors when shape $(W) \leq \tau$?
- Rank-metric codes over finite chain rings
- Which properties can be preserved?

Backup Slides

Physical-Layer Network Coding

Motivation

Current Wireless

Current Wireless

Router

Current Wireless

Current Wireless

Current Wireless

π

Current Wireless

Current Wireless

Current Wireless

Router

Routing requires 4 time slots

Network Coding

Network Coding

Network Coding

Network Coding

Network Coding

Router

Network Coding

Router

Network coding requires 3 time slots

Network Coding

Router

Network coding requires 3 time slots. Can we do better?

Physical-Layer Network Coding

Router

Physical-Layer Network Coding

Physical-Layer Network Coding

Physical-Layer Network Coding

Router

Physical-layer network coding requires 2 time slots

It Is More Than Going From 3 to 2

- A new way of dealing with interference process interference instead of avoiding it
- Can be extended to large networks each relay infers some linear combination

$$
\begin{aligned}
& \theta \\
& \bullet \\
& \bullet \Leftrightarrow
\end{aligned}
$$

Extension to Large Wireless Networks

Part 1: First PNC schemes

Example 1 (BPSK, $h_{1}=h_{2}=1$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Example 1 (BPSK, $h_{1}=h_{2}=1$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Example 1 (BPSK, $h_{1}=h_{2}=1$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Example 2 (QPSK, $h_{1} \approx h_{2}$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

01	11	$\bigcirc_{(01,01)}$	$(01,11) \bigcirc$	${ }^{(11,01)}$	$(11,11) \bigcirc$
0	0				
00	10				
O	\bigcirc	$\bigcirc(01,00)$	$(01,10)$	$\bigcirc(11,00)$	$(11,10)$
01	11	$(00,01)$	$(00,11) \bigcirc$	$(10,01)$	$(10,11) \bigcirc$
0	\bigcirc				
00	10				
\bigcirc	\bigcirc				
		$\bigcirc(00,00)$	$(00,10)$	O (10,00)	$(10,10)$
		-	O	-	O

Example 2 (QPSK, $h_{1} \approx h_{2}$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Example 2 (QPSK, $h_{1} \approx h_{2}$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Example 3 (QPSK, $h_{1} \approx i h_{2}$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Example 3 (QPSK, $h_{1} \approx i h_{2}$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Example 3 (QPSK, $h_{1} \approx i h_{2}$)

Zhang-Liew-Lam 2006, Popovski-Yomo 2006

Limitation of Original PNC Schemes

Limitation: phase misalignment \Rightarrow bad performance
Solution 1: require phase synchronization
Solution 2: mitigate phase misalignment by moving beyond XOR

- Popovski \& Yomo 2007
- Koike-Akino-Popovski-Tarokh 2008

Solution 3: mitigate phase misalignment by compute-and-forward

- Nazer \& Gastpar 2007

Example 4 (QPSK, $h_{1} \approx i h_{2}$)

Koike-Akino-Popovski-Tarokh: $(a b, c d) \rightarrow a b \oplus d c$

$\begin{aligned} & 01 \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & 0 \end{aligned}$	$(11,01)$	$(11,11) \bigcirc$	$(10,01)$	$(10,11) \bigcirc$
$\begin{gathered} 00 \\ 0 \end{gathered}$	$\begin{aligned} & 10 \\ & 0 \end{aligned}$				
		O (11,00)	$(11,10)$	$\bigcirc(10,00)$	$(10,10)$
$\begin{aligned} & 01 \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & 0 \end{aligned}$	$(01,01)$	$(01,11) \bigcirc$	$(00,01)$	$(00,11) \bigcirc$
$\begin{gathered} 00 \\ 0 \end{gathered}$	10				
	\bigcirc				
		$\bigcirc(01,00)$	$(01,10)$	$O^{(00,00)}$	$(00,10)$

Example 4 (QPSK, $h_{1} \approx i h_{2}$)

Koike-Akino-Popovski-Tarokh: $(a b, c d) \rightarrow a b \oplus d c$

Part 2: Compute-and-Forward

Compute-and-Forward Relaying Strategy

Nazer \& Gastpar's Approach (2006)

- Voronoi constellations based on Erez-Zamir's construction
- Main result: achievable rates for one-hop networks
- CSI only at the receivers but not at the transmitters

Similar Approaches

- Narayanan-Wilson-Sprintson (2007)
- Nam-Chung-Lee (2008)
- Wilson-Narayanan (2009)

Remark: all of these are based on Erez-Zamir's construction of Voronoi constellations

Voronoi Constellations in One Slide

pick a fine lattice Λ

Voronoi Constellations in One Slide

pick a coarse lattice Λ^{\prime}

Voronoi Constellations in One Slide

Voronoi region for the fine lattice Λ

Voronoi Constellations in One Slide

Voronoi region for the coarse lattice Λ^{\prime}

Key Idea: the Case of Integer Channel Gains

Each transmitter applies the same Voronoi constellation $\Lambda / \Lambda^{\prime}$

Key Idea: the Case of Integer Channel Gains

Transmitter 1 maps \mathbf{w}_{1} to a constellation point

Key Idea: the Case of Integer Channel Gains

Transmitter 2 maps \mathbf{w}_{2} to a constellation point

Key Idea: the Case of Integer Channel Gains

$$
\boldsymbol{y}=h_{1} \boldsymbol{x}_{1}+h_{2} \boldsymbol{x}_{2}+\boldsymbol{z}
$$

$$
\left(h_{1}, h_{2}\right)=(2,1)
$$

The channel is given by $\mathbf{y}=2 \mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{z}$

Key Idea: the Case of Integer Channel Gains

$$
\boldsymbol{y}=h_{1} \boldsymbol{x}_{1}+h_{2} \boldsymbol{x}_{2}+\boldsymbol{z}
$$

$$
\left(h_{1}, h_{2}\right)=(2,1)
$$

Hence, the received signal \mathbf{y} is like this

Key Idea: the Case of Integer Channel Gains

$$
\boldsymbol{y}=h_{1} \boldsymbol{x}_{1}+h_{2} \boldsymbol{x}_{2}+\boldsymbol{z}
$$

$$
\left(h_{1}, h_{2}\right)=(2,1)
$$

But how can we extract some information from \mathbf{y} ?

Key Idea: the Case of Integer Channel Gains

$$
\boldsymbol{y}=h_{1} \boldsymbol{x}_{1}+h_{2} \boldsymbol{x}_{2}+\boldsymbol{z}
$$

$$
\left(h_{1}, h_{2}\right)=(2,1)
$$

The receiver can decode $2 \mathbf{x}_{1}+\mathbf{x}_{2}$, if the noise \mathbf{z} is small

Key Idea: the Case of Integer Channel Gains

$$
\boldsymbol{y}=h_{1} \boldsymbol{x}_{1}+h_{2} \boldsymbol{x}_{2}+\boldsymbol{z}
$$

$$
\left(h_{1}, h_{2}\right)=(2,1)
$$

But we need a linear combination of messages...

Key Idea: the Case of Integer Channel Gains

Note that...

one can construct a one-to-one linear map between \mathbb{F}_{3}^{2} and $\Lambda / \Lambda^{\prime}$

$$
\begin{gathered}
\boldsymbol{w}_{1}=(1,0) \\
\boldsymbol{w}_{2}=(0,1) \\
\hat{\boldsymbol{u}}=(2,1) \\
\hat{\boldsymbol{u}}=2 \boldsymbol{w}_{1}+\boldsymbol{w}_{2}
\end{gathered}
$$

Hence, an integer combination of lattice points
$=$ a linear combination of messages

Key Idea: the Case of Real Channel Gains

What if channel gains are real numbers?
Applying a scaling operation $g(\mathbf{y})=\alpha \mathbf{y}$

$$
\begin{aligned}
\alpha \mathbf{y} & =\sum_{\ell} \alpha h_{\ell} \mathbf{x}_{\ell}+\alpha \mathbf{z} \\
& =\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\underbrace{\sum_{\ell}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z}}_{\text {effective noise }} \\
& =\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\mathbf{n},
\end{aligned}
$$

where $\left\{a_{\ell}\right\}$ are integers, and $\alpha \in \mathbb{R}$ is the scalar.
Thus, real-valued channel gains \Rightarrow integer channel gains

Key Idea: the Case of Real Channel Gains

What if channel gains are real numbers?
Applying a scaling operation $g(\mathbf{y})=\alpha \mathbf{y}$

$$
\begin{aligned}
\alpha \mathbf{y} & =\sum_{\ell} \alpha h_{\ell} \mathbf{x}_{\ell}+\alpha \mathbf{z} \\
& =\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\underbrace{\sum_{\ell}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z}}_{\text {effective noise }} \\
& =\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\mathbf{n},
\end{aligned}
$$

where $\left\{a_{\ell}\right\}$ are integers, and $\alpha \in \mathbb{R}$ is the scalar.
Thus, real-valued channel gains \Rightarrow integer channel gains

But how shall we choose the scalar α ?

see Nazer-Gastpar (IEEE Trans. Info. Theory, 2011) for details

Key Idea: the Case of Complex Channel Gains

What if channel gains are complex numbers?
Answer: lift real lattices to Gaussian lattices
Gaussian integers: $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$
Gaussian lattices: any Gaussian integer combination of lattice points is a lattice point
Then, apply a scaling operation $g(\mathbf{y})=\alpha \mathbf{y}$

$$
\begin{aligned}
\alpha \mathbf{y} & =\sum_{\ell} \alpha h_{\ell} \mathbf{x}_{\ell}+\alpha \mathbf{z} \\
& =\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\underbrace{\sum_{\ell}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z}}_{\text {effective noise }} \\
& =\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\mathbf{n},
\end{aligned}
$$

where $\left\{a_{\ell}\right\}$ are Gaussian integers, and $\alpha \in \mathbb{C}$ is the scalar

Main Result: Computation Rate

Computation Rate (Nazer-Gastpar)

$$
R_{\mathrm{comp}}=\log _{2}\left(\frac{P}{P \sum_{\ell}\left\|\alpha h_{\ell}-a_{\ell}\right\|^{2}+N_{0}|\alpha|^{2}}\right)
$$

Remark: Erez-Zamir's construction of Voronoi constellations \Rightarrow asymptotically long block length and almost unbounded complexity

Research Problems

What if practical Voronoi constellations are used?

Goal: Practical Design for Compute-and-Forward

- Short block length and low complexity
- Example: wireless fading channel with short coherent time

Research Problems

What if practical Voronoi constellations are used?

Goal: Practical Design for Compute-and-Forward

- Short block length and low complexity
- Example: wireless fading channel with short coherent time

Related Work

- Ordentlich \& Erez (2010)
- Hern \& Narayanan (2011)
- Tunali \& Narayanan (2011)
- Ordentlich-Zhan-Erez-Gastpar-Nazer (2011)
- Feng-Silva-Kschischang (2011)
- Emerging work includes Osmane \& Belfiore (in submission)

Part 3: An Algebraic Approach

Algebraic Approach: Key Elements

R-Lattices

Let R be a discrete subring of \mathbb{C} forming a principal ideal domain. Let $N \leq n$. An R-lattice of dimension N in \mathbb{C}^{n} is defined as the set of all R-linear combinations of N linearly independent vectors, i.e.,

$$
\Lambda=\left\{\mathbf{r} \mathbf{G}_{\Lambda}: \mathbf{r} \in R^{N}\right\}
$$

where $\mathbf{G}_{\Lambda} \in \mathbb{C}^{\Lambda \times n}$ is called a generator matrix for Λ.
$R=\mathbb{Z}[\omega] \Rightarrow$ Eisenstein lattices; $R=\mathbb{Z}[i] \Rightarrow$ Gaussian lattices

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

$$
\begin{gathered}
\mathbb{Z}[\omega] \triangleq\left\{a+b \omega: a, b \in \mathbb{Z}, \omega=e^{i 2 \pi / 3}\right\} \\
\mathbb{Z}[i] \triangleq\{a+b i: a, b \in \mathbb{Z}\} \\
\Lambda=\mathbb{Z}[i] \\
\Lambda^{\prime}=3 \mathbb{Z}[i]
\end{gathered}
$$

Algebraic Approach: Key Concepts

Key Concepts

Message space W (with $|W|=\left|\Lambda / \Lambda^{\prime}\right|$)
Labeling $\varphi: \Lambda \rightarrow W$ (consistent with $\Lambda / \Lambda^{\prime}$)
Embedding map $\bar{\varphi}: W \rightarrow \Lambda$ such that $\varphi(\bar{\varphi}(\mathbf{w}))=\mathbf{w}$

$$
W=\mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

$\varphi\left(\mathbf{w} \mathbf{G}_{\wedge}\right)=\mathbf{w} \bmod 3$

$$
\bar{\varphi}(\mathbf{w})=\mathbf{w} \mathbf{G}_{\wedge}
$$

Algebraic Approach: Key Property

Key Property

If the message space W is chosen carefully, then the labelling φ can be made linear.
In general, W can be chosen as $R /\left(\pi_{1}\right) \times \cdots \times R /\left(\pi_{k}\right)$, where π_{1}, \ldots, π_{k} are invariant factors of $\Lambda / \Lambda^{\prime}$.

$$
\begin{gathered}
\varphi\left(\mathbf{w} \mathbf{G}_{\wedge}\right)=\mathbf{w} \bmod 3 \\
\varphi(\bar{\varphi}(2,1)+\bar{\varphi}(1,0)) \\
=(0,1)
\end{gathered}
$$

Algebraic Approach: Key Property

Key Property

If the message space W is chosen carefully, then the labelling φ can be made linear. In general, W can be chosen as $R /\left(\pi_{1}\right) \times \cdots \times R /\left(\pi_{k}\right)$, where π_{1}, \ldots, π_{k} are invariant factors of $\Lambda / \Lambda^{\prime}$.

$2+i$	\bullet \bullet	$1+i$
\bullet	\bullet	\bullet
\bullet	\bullet	
$2+2 i$	$2 i$ \bullet	$1+2 i$ \bullet

Algebraic Approach: Encoding and Decoding

Encoding and Decoding

Transmitter ℓ sends $\mathbf{x}_{\ell}=\bar{\varphi}\left(\mathbf{w}_{\ell}\right)-Q_{\Lambda^{\prime}}\left(\bar{\varphi}\left(\mathbf{w}_{\ell}\right)\right)$
Receiver computes $\hat{\mathbf{u}}=\varphi\left(\mathcal{D}_{\Lambda}(\alpha \mathbf{y})\right)$
Remark: complexity here \approx complexity for point-to-point channels

Algebraic Approach: Error Probability

Error Probability

$$
\operatorname{Pr}[\text { error }]=\operatorname{Pr}\left[\mathcal{D}_{\Lambda}\left(\mathbf{n}_{\text {eff }}\right) \notin \Lambda^{\prime}\right]
$$

where $\mathbf{n}_{\text {eff }} \triangleq \sum_{\ell}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z}$ is the effective noise.

Proof Sketch:

$$
\alpha \mathbf{y}=\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\sum_{\ell}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z}=\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\mathbf{n}_{\text {eff }}
$$

Thus, $\mathcal{D}_{\Lambda}(\alpha \mathbf{y})=\sum_{\ell} a_{\ell} \mathbf{x}_{\ell}+\mathcal{D}_{\Lambda}\left(\mathbf{n}_{\text {eff }}\right)$
Therefore, $\hat{\mathbf{u}}=\varphi\left(\mathcal{D}_{\Lambda}(\alpha \mathbf{y})\right)=\mathbf{u}+\varphi\left(\mathcal{D}_{\wedge}\left(\mathbf{n}_{\text {eff }}\right)\right)$

Application: Practical Designs for Short Block Length

Union Bound Estimator

Union Bound Estimator (UBE) of the Error Probability

Recall that the effective noise $\mathbf{n}_{\text {eff }}=\sum_{\ell}\left(\alpha h_{\ell}-a_{\ell}\right) \mathbf{x}_{\ell}+\alpha \mathbf{z}$. If $\Lambda / \Lambda^{\prime}$ admits hypercube shaping, then the UBE is

$$
\operatorname{Pr}[\text { error }] \lesssim K\left(\Lambda / \Lambda^{\prime}\right) \exp \left(-\frac{d^{2}\left(\Lambda / \Lambda^{\prime}\right)}{4 N_{0}\left(|\alpha|^{2}+\operatorname{SNR}\|\alpha \mathbf{h}-\mathbf{a}\|^{2}\right)}\right)
$$

$K\left(\Lambda / \Lambda^{\prime}\right)$: \# of the shortest vectors in the set difference $\Lambda-\Lambda^{\prime}$ $d\left(\Lambda / \Lambda^{\prime}\right)$: length of the shortest vectors in the set difference $\Lambda-\Lambda^{\prime}$

Implications

- minimize $K\left(\Lambda / \Lambda^{\prime}\right)$ and maximize $d\left(\Lambda / \Lambda^{\prime}\right)$
- minimize $Q(\alpha, \mathbf{a}) \triangleq|\alpha|^{2}+\operatorname{SNR}\|\alpha \mathbf{h}-\mathbf{a}\|^{2}$

Remark: $\mathbf{n}_{\text {eff }}$ has i.i.d. component with variance $N_{0} Q(\alpha, \mathbf{a}) \Rightarrow$ minimum variance criterion

Figures of Merit

Signal-to-Effective-Noise Ratio (SENR)

$$
\mathrm{SENR} \triangleq P / N_{0} Q(\alpha, \mathbf{a})
$$

Nominal Coding Gain

$$
\operatorname{Pr}[\text { error }] \lesssim K\left(\Lambda / \Lambda^{\prime}\right) \exp \left(-\frac{3}{2} \frac{d^{2}\left(\Lambda / \Lambda^{\prime}\right)}{V(\Lambda)^{1 / n}} \frac{\text { SENR }}{2^{R_{\text {mes }}}}\right)
$$

Thus, $\gamma_{c}\left(\Lambda / \Lambda^{\prime}\right) \triangleq d^{2}\left(\Lambda / \Lambda^{\prime}\right) / V(\Lambda)^{1 / n}$ is nominal coding gain

Effective Coding Gain

Rule of thumb: effective coding gain $=$ nominal coding gain

$$
-0.2 \mathrm{~dB} \times \log _{2}\left(K\left(\Lambda / \Lambda^{\prime}\right) / 4\right)
$$

Practical Designs via Complex Construction A

Setup

- 9-QAM + linear codes over $\mathbb{Z}[i] /(3)$
- Idea: terminated (feedforward) convolutional codes
- Why? better performance-complexity tradeoff
- Low complexity \Rightarrow constraint length $\nu=1$ or 2
- Block length $=200$

ν	$\mathbf{g}(D)$	$\gamma_{c}\left(\Lambda / \Lambda^{\prime}\right)$
1	$[1+(1+i) D,(1+i)+D]$	$2(3 \mathrm{~dB})$
2	$\left[1+D+(1+i) D^{2},(1+i)+(1-i) D+D^{2}\right]$	$3(4.77 \mathrm{~dB})$

Remark: $\nu=1 \Rightarrow 9$ states; $\nu=2 \Rightarrow 81$ states

Practical Designs via Complex Construction A

