|
Contact:
Marcus Greferath
School of Math. Sciences
University College Dublin
Belfield, Dublin 4, Ireland
Phone: +353-1-716-2588 (UCD) +353-85-153-0951 (mobile)
Joachim Rosenthal
Institut of Mathematics
University of Zurich
Winterthurerstrasse 190
8057 Zurich, Switzerland
Phone: +41-44-63 55884 (office)
|
|
ITW 2010 Dublin
IEEE Information Theory Workshop
Dublin, August 30 - September 3, 2010
Information theoretic methods
Thu 02 Sep, 11.30-12.50, Room 2
Contributed session
|
Naira M. Grigoryan and Ashot N. Harutyunyan
Error Exponents in Multiple Hypothesis Testing for Arbitrarily Varying Sources
|
Abstract:
The problem of multiple hypothesis testing (HT) for arbitrarily
varying sources (AVS) is considered. The achievable error
probability exponents (reliabilities) region is derived, optimal
decision schemes are described. The result extends the known ones by
Fu and Shen and by Tuncel. The Chernoff bounds for AVS binary and
M-ary HT are specified via indication of a Sanov theorem for those
sources.
Thu 02 Sep, 11.30-11.50, Room 2
|
|
François Simon
Capacity of a Noisy Function
|
Abstract:
This paper presents an extension of the memoryless channel coding
theorem to noisy functions, i.e. unreliable computing devices
without internal states. It is shown that the concepts of equivocation
and capacity can be defined for noisy
computations in the simple case of memoryless noisy
functions. Capacity is the upper bound of input rates
allowing reliable computation, i.e. decodability of noisy outputs
into expected outputs. The proposed concepts are generalizations of
these known for channels: the capacity of a noisy implementation of
a bijective function has the same expression as the capacity of a
communication channel. A lemma similar to Feinstein's one is stated
and demonstrated. A model of reliable computation of a function
thanks to a noisy device is proposed. A coding theorem is stated and
demonstrated.
Thu 02 Sep, 11.50-12.10, Room 2
|
|
Kittipong Kittichokechai, Tobias J. Oechtering, and Mikael Skoglund
Source Coding With Common Reconstruction and Action-dependent Side Information
|
Abstract:
We determine the rate region of a source coding problem with common
reconstruction and action-dependent side information where an action
sequence is taken by an encoder over a rate-limited link. We show
that the rate region depends only on the sum-rate and the sum-rate
distortion and cost function is characterized. The result serves as
a fundamental limit in transmission scenarios where the encoder
wants to control and monitor the quality of the decoder's
reconstruction via the respective uses of action sequences and a
common reconstruction constraint.
Thu 02 Sep, 12.10-12.30, Room 2
|
|
S. Voloshynovskiy, O. Koval, F. Beekhof, F. Farhadzadeh, and T. Holotyak
Information-Theoretical Analysis of Private Content Identification
|
Abstract:
In recent years, content identification based on digital
fingerprinting attracts a lot of attention in different emerging
applications. At the same time, the theoretical analysis of digital
fingerprinting systems for finite length case remains an open
issue. Additionally, privacy leaks caused by fingerprint storage,
distribution and sharing in a public domain via third party
outsourced services cause certain concerns in the cryptographic
community. In this paper, we perform an information-theoretic
analysis of finite length digital fingerprinting systems in a
private content identification setup and reveal certain connections
between fingerprint based content identification and Forney's
erasure/list decoding [Forney, 1968]. Along this analysis,
we also consider complexity issues of fast content identification in
large databases on remote untrusted servers.
Thu 02 Sep, 12.30-12.50, Room 2
|
Back to previous page
Return to conference mainpage
|
|