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Summary

During the last decade, Maze, Monico, and Rosenthal suggested new ideas for

public key cryptography based on semigroup actions. Some concrete cryptosystems

involve matrices over finite simple semirings. In 2008, Zumbrägel came up with a

classification result, which characterises all proper finite simple semirings with zero.

This characterisation can be expressed in terms of residuated mappings between

finite lattices. The result was a big theoretical step in the study of the proposed

cryptosystems.

This thesis is meant to continue this investigation. We will focus on foundational

and computational problems that are relevant for cryptographic applications. To be

more precise, we will deal with the following problems:

• We investigate how to represent simple semirings in a computational device.

Such a representation should require little space, admit efficient operations,

and it should allow to generate arbitrary semirings elements. The solutions we

propose suggest to store a semiring implicitly by storing a lattice or by storing a

formal context. Furthermore, we investigate the cardinalities of these semirings

depending on the generating lattice or formal context.

• One chapter of this thesis will deal with invertible matrices over finite addi-

tively idempotent semirings. As all semirings considered in the other chapters

of this dissertation have these properties, our results will cover these semirings.

In particular, we will derive an invertibility criterion for such matrices, and

we will give a computation of the inverse matrix. Moreover, we will present a

formula for the number of invertible matrices.

• In the largest chapter, we will extend the classification of finite simple semi-

rings. Here, we aim to characterise every finite simple additively idempotent

semirings as a semiring of join-morphisms of a semilattice. It will turn out that

this approach works for a very large class of semirings. Particularly, we will

obtain a complete classification of finite simple semirings with an additively

neutral element.

Most of the approaches and results in this dissertation are based on the char-

acterisation of proper finite simple semirings as semirings of residuated mappings.

Therefore, major parts of this work involve concepts and tools from order theory,

lattice theory, and in particular from residuation theory.
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Chapter 1

Introduction

The work in this dissertation is dedicated to finite algebraic structures with appli-

cation in cryptography: we will particularly focus on finite simple semirings. Jens

Zumbrägel classified finite simple semirings with zero in [61]. These semirings are

interesting for new ideas in public key cryptography based on semigroup actions [42].

The work of Zumbrägel contains a characterisation of proper finite simple semirings,

which can be expressed in terms of residuated mappings of finite lattices. Based on

these results, we continue the study of finite simple semirings, where we mostly re-

strict to aspects important for cryptographic applications. However, the study of

simple (universal) algebras is a topic of independent interest in mathematics. The

classification of finite simple groups, for example, received vast attention. Unlike

the classification of finite simple groups or the classification of finite simple rings,

the classification of finite simple semirings has not yet been completed. Therefore,

one important part of this dissertation is about the continuation of the classification

of finite simple semirings.

In this introductory chapter we give the most important background informa-

tion for this dissertation. Firstly, we clarify some notation and recall fundamental

concepts from universal algebra in Section 1.1. Since we use order and lattice the-

oretic concepts throughout this dissertation, we give some background information

on order and lattice theory in Section 1.2. In Section 1.3, we introduce semirings.

In particular, we will present the characterisation of proper finite simple semiring

given in [61]. Section 1.4 is about cryptography, particularly about public-key cryp-

tography based on semigroup actions and hence, about the application of semirings

in cryptography. Finally, we give an overview and an outline of this work in Sec-

tion 1.5.
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Chapter 1. Introduction

1.1 Notations and universal algebra

This section will clarify some notation concerning (universal) algebras. Notation

introduced for arbitrary algebras will also be used for specific algebras. For example,

when we define homomorphisms between two algebras A and B, then it should

become clear how homomorphisms between two semirings (R,+, ·) and (S,+, ·),
between two monoids (M,+, 0) and (N,+, 0), and so on are defined. Also, if we

define, for example, that Hom(A,B) denotes the set of all homomorphism from an

algebra A to an algebra B, then Hom(M,N) will correspondingly denote the set of

all (monoid) homomorphism from M to N for two monoids M and N.

In addition to the above notation we will recall some basic concepts from univer-

sal algebra, which are important for us. This is basically the concept of congruences.

Since we will use congruences for semirings, lattices, and semimodules, we introduce

them and explain their role in this general setting. All definitions and notations are

mostly stated as in [8] or [24]. Proofs for all stated facts can also be found in those

books.

Algebras

An n-ary operation on a nonempty set A is a mapping f from An to A, and n

is the arity of f . A finitary operation is an n-ary operation for an n ∈ N. An

algebra A is a pair (A,F ), where A is a nonempty set and F a family of finitary

operations on A. The set A is called the base set of A, and the elements of F are

called the fundamental operations of A.

We will denote algebras by bold capital letters or by pairs as above. If a bold

capital letter is assigned to an algebra, then the base set will be denoted by the

corresponding italic capital letter. This means if we mention an algebra A without

mentioning the base set explicitly, then it will be clear that A is meant to be the

base set of A. For a finite set of operations F = {f1, ..., fn}, we will also denote an

algebra (A,F ) by (A, f1, ..., fn).

If one wants to talk about two algebras at the same time, the concept of language

is helpful: A language of algebras is a set F , whose elements are called operation

symbols, such that for each operation symbol f ∈ F a nonnegative n is assigned,

which is called the arity of f . An n-ary operation symbol is an operation symbol

of arity n.

If F is a language of algebras, then an F-algebra is an algebra A = (A,F ) such

that F is indexed by F , i.e. F = (fA | f ∈ F), and fA has the same arity as f for

2



1.1. Notations and universal algebra

every f ∈ F . If the context is clear, one can also write f instead of fA.

If A and B are two F-algebras for a language F , then B is a subalgebra of A

if B ⊆ A and fB = fA|Bn for every f ∈ F , where n is the arity of f .

Homomorphisms

Let F be a language of algebras and let A and B be two F-algebras. A homomor-

phism from A to B is a mapping ϕ : A→ B that satisfies

ϕ(fA(a1, ..., an)) = fB(ϕ(a1), ..., ϕ(an))

for every n ∈ N, every n-ary f ∈ F , and all a1, ..., an ∈ A. An endomorphism

of A is a homomorphism from A to A, and an epimorphism1 from A to B is a

surjective homomorphism from A to B. An isomorphism from A to B is a bijective

homomorphism from A to B, and an automorphism of A is an isomorphism from

A to A. If there exists an isomorphism from A to B, then A and B are called

isomorphic, which is denoted by A ∼= B. We will denote the set of homomorphisms

from A to B by Hom(A,B), the set of endomorphism of A by End(A), and the set

of automorphisms of A by Aut(A).

Congruences

For a set S, an equivalence relation ∼ on S, and an element x ∈ S we denote the

equivalence class of x with respect to ∼ by [x]∼ or if there is no confusion just by [x].

Definition 1.1. Let A = (A,F ) be an algebra. A congruence on A is an equi-

valence relation ∼ on A with the following property: For every n ∈ N, every n-ary

f ∈ F , and all elements ai, bi ∈ A for i = 1, ..., n the implication

(∀i = 1, ..., n : ai ∼ bi) ⇒ f(a1, ..., an) ∼ f(b1, ..., bn)

holds.

The equality relation idA = {(a, a) | a ∈ A} and the complete relation A×A
are examples of congruences on an algebra A. A congruence is called non-total if

it is unequal to the complete relation.

1We will work with the definition of epimorphism as it is used in universal algebra. This is
different from the definition in category theory

3



Chapter 1. Introduction

Congruences play the same role for algebras as normal subgroups for groups or

ideals for rings as we will see in the next steps:

Let F be a language of algebras, let A be an F-algebra, and let ∼ be a congruence

on A. Then the quotient algebra of A by ∼, denoted by A/∼, is the algebra with

the base set A/∼ and whose fundamental operations (fA/∼ | f ∈ F) satisfy

fA/∼([a1], ..., [an]) = [fA(a1, ..., an)]

for every n ∈ N, every n-ary operation symbol f ∈ F , and all a1, ..., an ∈ A. In

particular, A/∼ is also an F-algebra. Moreover, the mapping

ϕ∼ : A→ A/∼, x 7→ [x]

is an epimorphism from A to A/∼, called the natural homomorphism from A

to A/∼.

Let A and B be two algebras and let ϕ ∈ Hom(A,B). Then the kernel

ker(ϕ) := {(a, b) ∈ A×A | ϕ(a) = ϕ(b)} of ϕ is a congruence on A.

Theorem 1.2 (Homomorphism Theorem). Let A and B be algebras and α an

epimorphism from A to B. Then there exists an isomorphism β from A/ker(α) to

B defined by β : [x] 7→ α(x).

The homomorphism theorem shows that every homomorphic image of an algebra

A is isomorphic to a quotient algebra of A. Since every quotient algebra is deter-

mined by a congruence, every homomorphic image is determined by a congruence.

An algebra A is called simple if its only congruences are idA and A×A. Hence,

every quotient algebra and every homomorphic image of a simple algebra A is iso-

morphic to A or has just one element.

1.2 Basics of order and lattice theory

Since the characterisation of proper finite simple semiring with zero in [61] is based

on some lattice theoretic background, and since most of the work in this dissertation

uses some order theoretic tools, we will give some information on order and lattice

theory in this section. Particularly the concept of residuated mappings will be of

importance for this dissertation. The reader more interested in lattice theory is

referred to the standard monograph [4] by Birkhoff but also to [23] by Grätzer.

More information about residuated mappings can be found in [7] and [5]. Beside the

4



1.2. Basics of order and lattice theory

books already mentioned, the reader may consult [25] or [52] for more background

information on general order theory.

Ordered sets

An ordered set P is a pair (P,≤), where P is a nonempty set and ≤ is a binary,

reflexive, antisymmetric, and transitive relation on P . The relation ≤ is called an

order (or order relation) on P . Analogously to the convention on the notation of

algebras, we will denote an ordered set by a bold capital letter or as a pair consisting

of the set and the order on the set. If a bold capital letter is assigned to an ordered

set, the corresponding set will be denoted by the corresponding italic capital letter.

Also, if not stated differently, we will denote the order by ≤. This means if an

ordered set P is mentioned, then it will be clear that P = (P,≤).

Let P = (P,≤) be an ordered set. Then we write x < y if x ≤ y and x 6= y

for x, y ∈ P . Furthermore, we define the order ≥ on P by x ≥ y :⇔ y ≤ x for

x, y ∈ P . It is called the dual order of ≤, and Pd := (P,≥) is called the dual

ordered set of P. If x, y ∈ P with x < y and x ≤ z ≤ y imply x = z or y = z for

every z ∈ P , then x is called a lower neighbour of y, and y is called an upper

neighbour of x. If there exists an element x ∈ P with x ≤ y for every y ∈ P , then

x is called the least element of P, and it is denoted by 0P. A greatest element

is defined dually and denoted by 1P. Let X be a subset of P . An upper bound

of X is an element a ∈ P with x ≤ a for every x ∈ X. A lower bound is defined

dually. If there exists a least element in the set of all upper bounds of X, then it

is called the supremum of X and is denoted by
∨
X or supX. Dually, a greatest

lower bound is called the infimum and is denoted by
∧
X or inf X. If X = {x, y},

then we also write x ∨ y for
∨
X and x ∧ y for

∧
X. Supremum and infimum are

also called join and meet.

Semilattices

A join-semilattice (or ∨-semilattice) is an ordered set L = (L,≤), in which the

supremum x ∨ y exists for every two elements x, y ∈ L. Meet-semilattices (or

∧-semilattices) are defined dually.

An algebra (L,+) is called a semilattice if + is a binary, associative, commu-

tative, idempotent operation on L.

The following theorem states that the definition of (join-)semilattices as ordered

sets is equivalent to the definition of semilattices as algebras, what can be found

5



Chapter 1. Introduction

in [4] or [23].

Theorem 1.3. 1. Let the ordered set L = (L,≤) be a join-semilattice and set

x ∨ y := sup{x, y} for all x, y ∈ L. Then the algebra La = (L,∨) is a semilat-

tice.

2. Let the algebra (L,+) be a semilattice and define the binary relation ≤ on L

by

x ≤ y :⇔ x+ y = y for all x, y ∈ L.

Then Lp = (L,≤) is an ordered set, and the ordered set is a join-semilattice

with x ∨ y = x+ y for all x, y ∈ L.

3. Let the ordered set L = (L,≤) be a join-semilattice. Then (La)p = L.

4. Let the algebra (L,+) be a semilattice. Then (Lp)a = L.

An analogous theorem exists for meet-semilattices. Due to this theorem, we do

not have to state explicitly if we consider a join-semilattice L as an ordered set (L,≤)

or as an algebra (L,∨) if we mention just L. However, if a certain situation requires

a certain consideration, then we will do so. The same holds for meet-semilattices.

An element a of a join-semilattice L is called join-irreducible if it is not a least

element and a = b ∨ c implies b = a or c = a for all b, c ∈ L. Otherwise it is called

join-reducible. The set of join-irreducible elements of L is denoted by J(L). If L

is finite, then the element a is join-irreducible iff it has exactly one lower neighbour.

Meet-irreducible and meet-reducible are defined dually for elements in meet-

semilattices. The set of meet-irreducible elements of a meet-semilattice L is denoted

by M(L).

Lattices

The ordered set L = (L,≤) is a lattice if the supremum x∨y and the infimum x∧y
exist for any two elements x, y ∈ L. Furthermore, it is called a complete lattice if

the supremum
∨
X and the infimum

∧
X exist for every subset X of L. A complete

lattice L has a greatest element, 1L =
∨
L, and a least element, 0L =

∧
L. From the

definition there follows that the supremum and the infimum also exist for X = ∅.
We have

∨
∅ = 0L and

∧
∅ = 1L.

There also exists a definition of lattices as algebras: An algebra (L,∨,∧) is called

a lattice if ∨ and ∧ are binary, associative, commutative operations on L satisfying

6



1.2. Basics of order and lattice theory

the absorption laws

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x

for all x, y ∈ L.

In analogy to Theorem 1.3, the following theorem shows that the two definitions

of lattices are equivalent. For a proof see e.g. [23].

Theorem 1.4. 1. Let the ordered set L = (L,≤) be a lattice and set

x ∨ y := sup{x, y} and x ∧ y := inf{x, y}

for all x, y ∈ L. Then the algebra La = (L,∨,∧) is a lattice.

2. Let the algebra L = (L,∨,∧) be a lattice and define the binary relation ≤ on L

by

x ≤ y :⇔ x ∨ y = y for all x, y ∈ L.

Then Lp = (L,≤) is an ordered set, and the ordered set Lp is a lattice.

3. Let the ordered set L = (L,≤) be a lattice. Then (La)p = L.

4. Let the algebra L = (L,∨,∧) be a lattice. Then (Lp)a = L.

Because of this theorem, we also do not have to state explicitly if we consider a

lattice L as an ordered set (L,≤) or as an algebra (L,∨,∧) if we mention just L,

unless a certain situation requires a certain consideration.

A lattice K is a sublattice of a lattice L if the algebra (K,∨,∧) is a subalgebra

of (L,∨,∧).

A lattice L is called distributive if

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

are satisfied for all x, y, z ∈ L.

An element a ∈ L of a complete lattice L = (L,≤) is called
∨

-irreducible

(or complete join-irreducible) if a 6=
∨
{x ∈ L | x < a}. Analogously, a is

called
∧

-irreducible (or complete meet-irreducible) if a 6=
∧
{x ∈ L | a < x}.

For finite lattices,
∨

-irreducible is equivalent to join-irreducible and
∧

-irreducible

is equivalent to meet-irreducible.

7



Chapter 1. Introduction

Residuated mappings

Let P = (P,≤) and Q = (Q,≤) be ordered sets and f : P → Q a mapping. Then f

is called isotone if it fulfils x ≤ y ⇒ f(x) ≤ f(y) for all x, y ∈ P . If f is isotone and

there exists an isotone mapping g : Q → P with f ◦ g ≤ idQ and g ◦ f ≥ idP , then

f is called residuated. If f is residuated, then the mapping g : Q → P satisfying

f ◦ g ≤ idQ and g ◦ f ≥ idP is uniquely determined. Furthermore, it is called the

residual of f and denoted by f+. One also finds that f is residuated iff the set

{x ∈ P | f(x) ≤ y} is nonempty and admits a greatest element for every y ∈ Q.

Moreover, if f is residuated, then f+ fulfils f+(y) =
∨
{x ∈ P | f(x) ≤ y} for every

y ∈ Q (see [7]). By Res(P,Q) we denote the set of all residuated mappings from P

to Q and we define Res(P) := Res(P,P).

Morphisms

Let P = (P,≤) and Q = (Q,≤) be ordered sets and f : P → Q a mapping. Then

f is an order embedding from P into Q if it fulfils x ≤ y ⇔ f(x) ≤ f(y) for

all x, y ∈ P . An order embedding is necessarily injective and isotone. If f is a

surjective order embedding, then it is called an (order) isomorphism from P to

Q. Dually, f is called a dual (order) isomorphism if it is surjective and satisfies

x ≤ y ⇔ f(x) ≥ f(y) for all x, y ∈ P . If there exists an order isomorphism from

P to Q, then P and Q are called isomorphic, which is denoted by P ∼= Q. An

isomorphism from P to P is called an (order) automorphism of P. The set of

automorphisms of P is denoted by Aut(P). Note that if L and K are join-semilattices

(meet-semilattices), then a mapping f : L → K is an order isomorphism between

the ordered sets (L,≤) and (K,≤) iff it is an isomorphism between the algebras

(L,∨) and (K,∨) ((L,∧) and (K,∧)). In particular, if L and K are lattices, then

f is an order isomorphism between the ordered sets (L,≤) and (K,≤) iff it is an

isomorphism between the algebras (L,∨,∧) and (K,∨,∧). The corresponding holds

for automorphisms of semilattices and lattices.

Let L = (L,≤) and K = (K,≤) be two join-semilattices. Then a mapping

f : L→ K is called a join-morphism or ∨-morphism if it satisfies

f(x ∨ y) = f(x) ∨ f(y)

for all x, y ∈ L. By JM(L,K) we denote the set of all join-morphisms from L to K

and we define JM(L) := JM(L,L). Furthermore, f is said to be a complete join-

8



1.2. Basics of order and lattice theory

morphism or complete ∨-morphism if for every subset X of L, such that
∨
X

exists in L,
∨
f(X) exists in K and

f(
∨
X) =

∨
f(X).

(Complete) meet-morphisms or (complete) ∧-morphisms between meet-semi-

lattices are defined dually.

A complete join-morphism f : L→ K between complete lattices L = (L,≤) and

K = (K,≤) satisfies in particular

f(0L) = f(
∨
∅) =

∨
f(∅) =

∨
∅ = 0K.

If L is finite, then a mapping g : L → K is a complete join-morphism iff it is a

join-morphism and fulfils f(0L) = 0K. The following proposition states a connec-

tion between complete join-morphisms and residuated mappings between complete

lattices [7]:

Proposition 1.5. Let L and K be completes lattices and f : L → K a mapping.

Then f is residuated iff it is a complete join-morphism.

Closure operators and closure systems

If P is an ordered set and ϕ : P → P a mapping, then ϕ is called idempotent if

it satisfies ϕ(x) = ϕ(ϕ(x)), increasing if it satisfies x ≤ ϕ(x), and decreasing if

it satisfies x ≥ ϕ(x) for every x ∈ P . Furthermore, ϕ is called a closure operator

(kernel operator) on P if it is isotone, idempotent, and increasing (decreasing).

Clearly, ϕ is a closure operator on P iff it is a kernel operator on Pd. By definition

it follows easily that ϕ is a closure operator on P iff it satisfies

x ≤ ϕ(y) ⇔ ϕ(x) ≤ ϕ(y) (1.1)

for all x, y ∈ P . Dually, ϕ is a kernel operator on P iff it satisfies

ϕ(y) ≤ x ⇔ ϕ(x) ≤ ϕ(y) (1.2)

for all x, y ∈ P . A subset S ⊆ P is called a closure system (kernel system) of

P if there exists a closure operator (kernel operator) γ on P satisfying S = γ(P ).

We denote the set of all closure systems of P by C(P) and the set of all kernel

systems of P by K(P). If L = (L,≤) is a complete lattice and S is a subset of L,

9
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then S is a closure system of L iff S is closed under
∧

. Dually, S is a kernel

system of L iff S is closed under
∨

. If S is a closure system (kernel system) of L,

then S := (S,≤ ∩(S × S)) is a complete lattice and the infimum (supremum) in S

corresponds to the infimum (supremum) in L (see [57]).

1.3 Semirings

Semirings are a natural generalisation of rings, where the additive structure is al-

lowed to be a commutative semigroup instead of an abelian group. A well-known

example of a semiring that is not a ring is provided by the set of natural numbers

with the usual addition and multiplication. The concept of semirings was introduced

by Vandiver [56] in 1934. Semirings are widely used as a tool in mathematics but

also have many applications in computer science, e.g. in automata theory. For more

detailed information on semirings, the reader is referred to [20, 27, 28]. A large col-

lection of references on semirings can be found in [19]. In order to define semirings,

one needs the definition of semigroup:

Definition 1.6. Let S be a nonempty set and · a binary operation on S. Then

(S, ·) is called a semigroup if the operation · is associative.

The reader should note that the notion of semiring is not unique in the literature.

We will use the following version:

Definition 1.7. Let R be a nonempty set and + and · two binary operations on

R, called addition and multiplication. Then the algebra (R,+, ·) is called a

semiring if

• (R,+) is a commutative semigroup,

• (R, ·) is a semigroup,

• the distributive laws

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z for all x, y, z ∈ R

hold.

A semiring (R,+, ·) is called a proper semiring if it is not a ring, i.e. (R,+) is not

a group. It is called commutative if (R, ·) is commutative.

10



1.3. Semirings

If (R,+, ·) is a semiring, then we mostly write for the multiplication xy := x · y
for x, y ∈ R.

Definition 1.8. Let (R,+, ·) be a semiring. If there exists an additively neutral

element 0 in R that fulfils 0r = r0 = 0 for every r ∈ R, then it is called the zero of

(R,+, ·). If there exists a multiplicatively neutral element 1 in R, then it is called

the one of (R,+, ·).

Matrix semirings

Let (R,+, ·) be a semiring and I an index set. An I×I matrix A over R is a mapping

A : I × I → R. By MatI×I(R) we denote the set of all I × I matrices over R. If

I = {1, ..., n} for an n ∈ N, then we also call an I × I matrix an n × n matrix and

we denote Matn×n(R) := MatI×I(R). If A ∈ MatI×I(R) and (i, j) ∈ I × I, then we

define ai,j := A(i, j). Now let I be finite. For A,B ∈ MatI×I(R), the matrix sum

A+B is defined component-wise. The matrix product A ·B is defined to be the

matrix C, where

ci,j =
∑
k∈I

ai,kbk,j .

The algebra (MatI×I(R),+, ·) equipped with these two operations is also a semiring,

called matrix semiring.

Simple semirings

By Definition 1.1, a congruence on a semiring (R,+, ·) is an equivalence relation ∼
on R such that

a ∼ b and c ∼ d ⇒ a+ c ∼ b+ d for all a, b, c, d ∈ R and (1.3)

a ∼ b and c ∼ d ⇒ a · c ∼ b · d for all a, b, c, d ∈ R. (1.4)

One can easily see that Equation 1.3 is equivalent to

a ∼ b ⇒ a+ c ∼ b+ c for all a, b, c ∈ R (1.5)

and Equation 1.4 to

a ∼ b ⇒ a · c ∼ b · c and c · a ∼ c · b for all a, b, c ∈ R. (1.6)

The notion of simplicity for semirings is not unique in the literature either. We

11
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use the common definition of simple from universal algebra:

Definition 1.9. A semiring (R,+, ·) is called simple if its only congruences are idR

and R×R.

1.3.1 Proper finite simple semirings with zero

Until the end of the last decade, proper finite simple semirings, especially those with

zero, had not been comprehensively studied. In 2008, Zumbrägel came up with the

classification of finite simple semirings with zero in [61]. The main result of it gives

a characterisation of proper finite simple semirings with zero. Originally Zumbrägel

characterised these semirings as endomorphism semirings of monoids. In this section

we will present this result, and we will reformulate it in terms of residuated mappings

of lattices. The representation of semirings as semirings of residuated mappings is

helpful, as we can achieve new results concerning simple semirings due to the rich

theory of ordered sets, lattices, and residuated mappings.

Let M = (M,+, 0) be a commutative monoid. Then the algebra (End(M),+, ◦)
is a semiring with zero, where the addition + is the pointwise sum and the multipli-

cation ◦ the composition of two mappings. If M is idempotent, then (End(M),+)

is also idempotent and if furthermore |M | > 1, then (End(M),+, ◦) is in particular

a proper semiring.

Now let M = (M,+, 0) be a commutative idempotent monoid. Then a subsemi-

ring (R,+, ◦) of (End(M),+, ◦) is called dense in [61] if R contains the endomor-

phism ea,b ∈ End(M) for all a, b ∈M , which is defined by

ea,b(x) :=

0 if x+ a = a

b else

for all x ∈M . The main result from [61] is the following:

Theorem 1.10. Let (R,+, ·) be a proper finite semiring with zero. Then the fol-

lowing are equivalent:

1. (R,+, ·) is simple.

2. |R| ≤ 2 or (R,+, ·) is isomorphic to a dense subsemiring of (End(M),+, ◦),
where M = (M,+, 0) is a finite idempotent commutative monoid.

If M = (M,+, 0) is a finite commutative idempotent monoid and one defines

the order relation ≤ on M by x ≤ y :⇔ x + y = y, then (M,≤) is a lattice with

12
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sup{x, y} = x + y for all x, y ∈ M and least element 0. Furthermore, a mapping

f : M →M is an endomorphism of M iff it is a join-morphism of (M,≤) satisfying

f(0) = 0, i.e. it is a residuated mapping of (M,≤). Hence, one can also formulate

Theorem 1.10 by means of residuated mappings of lattices. In fact, we have the

following: Let L = (L,≤) be a complete lattice. The algebra (Res(L),∨, ◦) is a

semiring, where the addition ∨ is the pointwise supremum and the multiplication ◦
the composition of two mappings. The mapping 0L : L→ L, x 7→ 0L is a zero and

idL a one of (Res(L),∨, ◦). This semiring is furthermore additively idempotent and if

|L| > 1, then it is in particular a proper semiring. If K = (K,≤) is another complete

lattice, then we define for a ∈ L and b ∈ K the residuated mapping ea,b ∈ Res(L,K)

by

ea,b(x) :=

0K if x ≤ a

b else

for every x ∈ L. We call a subsemiring (R,∨, ◦) of (Res(L),∨, ◦) dense if ea,b ∈ R
for all a, b ∈ L. Now we can reformulate Theorem 1.10:

Theorem 1.11. Let L be a finite lattice and (R,∨, ◦) a dense subsemiring of

(Res(L),∨, ◦). Then (R,∨, ◦) is a proper finite simple semiring with zero. Con-

versely, every proper finite simple semiring (S,+, ·) with |S| > 2 and a zero is

isomorphic to such a semiring.

In [61], it was already pointed out that endomorphisms of finite commutative

idempotent monoids correspond to join-morphisms of finite lattices that preserve the

least element of the lattice. However, a connection between Theorem 1.10 and resi-

duated mappings did not appear in the literature before (except in [34, 35, 36], which

contain results of the thesis). The formulation of the result in Theorem 1.11, despite

being a trivial consequence of Theorem 1.10, is novel and enables new approaches for

the study of proper finite simple semirings with zero due to the established theory

of residuated mappings.

1.4 Cryptography

Cryptography is the science of secret writing. Its purpose is to enable secure com-

munication, an old desire of humankind. The first known use of cryptography leads

back to Ancient Egypt. With the expansion of computers and the increasing use

of telecommunication, cryptography is now more important than ever before. In
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the recent decades it became a much-noticed discipline in mathematics, computer

science and electrical engineering.

Modern cryptography deals with more than secrecy. It can be seen as the study

of information security, where various aspects are considered. The most important

ones are:

• Confidentiality : Only authorised parties should get access to the information.

• Data integrity : Data manipulation by unauthorised parties should be detected.

• Authentication: The author of the information should get identified.

In this section we state the necessary information about cryptography to un-

derstand the cryptosystems based on semigroup actions proposed in [42]. For more

information, we refer to various textbooks, e.g. [21, 22, 33, 43].

A typical scenario considered in cryptography is the following: Two parties,

typically called Alice and Bob, wish to communicate with each other in a secure

way. The problem is that there may be an eavesdropper, usually called Eve, present.

If Alice wishes to sent a message m to Bob such that Eve is not able to read this

message, she will apply an encryption function ϕ on m and will obtain a ciphertext c,

which will be sent to Bob. If Bob has the corresponding decryption function ψ, then

Bob can recover m from c. To prevent Eve from recovering the message m, it should

be hard for Eve to find ψ, and it should be hard to recover m from c without ψ. The

functions ϕ and ψ usually depend on two inputs, namely a message m and a key

kA, or a ciphertext c and a key kB, respectively. If both parties use the same key,

i.e. kA = kB, then one talks about a symmetric encryption scheme. If a symmetric

encryption scheme is used, the parties have to agree on a secret key. Until the 1970’s

it was believed that a completely secure channel is necessary to communicate such

a key, which is a strong assumption. However, Whitfield Diffie and Martin Hellman

observed that an agreement over an insecure channel is also possible. This led to

the Diffie-Hellman key agreement [10].

Protocol 1.12. (Diffie-Hellman key agreement)2

• Alice and Bob publicly agree on a finite group (G, ·) and an element g ∈ G.

• Alice chooses an integer a and computes α = ga. She sends α to Bob and

keeps a secret.

2Diffie and Hellman used originally the group (Zp, ·) for a prime number p, and the element g
was a primitive element in (Zp, ·).
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• Bob chooses an integer b and computes β = gb. He sends β to Alice and keeps

b secret.

• Their common secret key is k = αb = βa = gab.

If an eavesdropper Eve is present, then the group (G, ·) and the elements g, α,

and β are known to her. To prevent Eve from knowing the secret key k it should

be hard to recover k from the given information. This means the so-called Diffie-

Hellman problem should be hard.

Problem 1.13. (Diffie-Hellman problem): Given a finite group (G, ·), an ele-

ment g ∈ G, and elements α = ga and β = gb for some positive integers a, b, find

the element gab.

Obviously, Eve could compute k if she additionally knew a or b. Hence, it is a

necessary condition that the discrete logarithm problem is hard.

Problem 1.14. (Discrete logarithm problem): Given a finite group (G, ·), ele-

ments a, b ∈ G such that b ∈ 〈a〉, find a positive integer n with an = b.

It is unknown if these two problems are equivalent. However, it is believed that

they are and with some additional assumptions this was proven in [40].

1.4.1 Cryptography based on semigroup actions

The group exponentiation Z×G→ G, (n, g) 7→ gn, where (G, ·) is a finite group, used

in the Diffie-Hellman key agreement protocol is an example of a semigroup action.

More precisely, the commutative semigroup (Z, ·) is acting on the set G. Maze,

Monico, and Rosenthal observed that the Diffie-Hellman key agreement protocol

can be generalised by using arbitrary semigroup actions, where the semigroup has

to be commutative [41, 42, 46].

Definition 1.15. Let (A, ·) be a semigroup and X a set. A semigroup action of

(A, ·) on X is a mapping

ρ : A×X → X

satisfying ρ(a · b, x) = ρ(a, ρ(b, x)) for all a, b ∈ A and x ∈ X.

For a semigroup action ρ of a semigroup (A, ·) on a set X, we will mostly

write a.x := ρ(a, x). Furthermore, we use the notation A.x := {a.x | a ∈ A}
for every x ∈ X.
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The resulting generalisation of the Diffie-Hellman key agreement protocol by

using commutative semigroup actions is the following protocol [42, Protocol 2.1]:

Protocol 1.16. (Extended Diffie-Hellman key agreement)

• Alice and Bob publicly agree on a commutative semigroup (S, ·), a set X, a

semigroup action of (S, ·) on X, and an element x ∈ X.

• Alice chooses a ∈ S and computes α = a.x. She sends α to Bob and keeps a

secret.

• Bob chooses b ∈ S and computes β = b.x. He sends β to Alice and keeps b

secret.

• Their common secret key is k = b.α = a.β = (a · b).x.

As the Diffie-Hellman problem has to be hard for the Diffie-Hellman protocol, the

so-called Diffie-Hellman semigroup action problem has to be hard for Protocol 1.16.

Problem 1.17. (Diffie-Hellman semigroup action problem): Given a commu-

tative semigroup (S, ·) acting on a set X, an element x ∈ X, and elements α = a.x

and β = b.x for some a, b ∈ S, find (a · b).x.

The corresponding problem to the discrete logarithm problem is the semigroup

action problem.

Problem 1.18. (Semigroup action problem): Given a semigroup (S, ·) acting

on a set X, an element x ∈ X, and an element α ∈ S.x, find a ∈ S such that a.x = α.

Clearly, the semigroup action problem has to be hard if the Diffie-Hellman semi-

group action problem is supposed to be hard. However, here it is also unknown if

the two problems are equivalent.

A concrete realisation of Protocol 1.16 was also proposed in [42]. The semigroup

action used there involves matrices over semirings. We need some preparation to

state the protocol in detail.

Definition 1.19. The centre of a semiring (R,+, ·) is the set

{r ∈ R | ∀s ∈ R : rs = sr}.
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Let (R,+, ·) be a finite semiring with zero, let n be a positive integer, and let C

be the center of (R,+, ·). Then C is nonempty since it contains the zero of (R,+, ·).
Let C[x] be the set of polynomials in the indeterminate x with coefficients in C. If

p(x) = r0 + r1x+ · · ·+ rkx
k ∈ C[x]

and M ∈ Matn×n(R), then let p(M) := r0In + r1M + · · · + rkM
k, where r0In

is defined to be the n × n diagonal matrix with entry r0 in each diagonal element.

Furthermore, let C[M ] := {p(M) | p(x) ∈ C[x]}. Then (C[M ],+, ·) is a commutative

subsemiring of (Matn×n(R),+, ·). Let M1,M2 ∈ Matn×n(R). Define the operation ∗
on C[M1]× C[M2] by (A,B) ∗ (C,D) := (A ·C,D ·B) for (A,B), (C,D) ∈ C[M1]×
C[M2]. Consider the following semigroup action of the semigroup (C[M1]×C[M2], ∗)
on the set Matn×n(R):

(C[M1]× C[M2])×Matn×n(R)→ Matn×n(R)

((p(M1), q(M2), A) 7→ p(M1) ·A · q(M2).

Using this concrete semigroup action in Protocol 1.16 yields the following, which is

[42, Protocol 5.1]:

Protocol 1.20. (Diffie-Hellman with two-sided matrix semiring action)

• Alice and Bob publicly agree on a finite semiring (R,+, ·) with zero and choose

a positive integer n and matrices M1,M2, S ∈ Matn×n(R).

• Alice chooses polynomials pa, qa ∈ C[x] and computes A = pa(M1) ·S ·qa(M2).

She sends A to Bob and keeps pa, qa secret.

• Bob chooses polynomials pb, qb ∈ C[x] and computes B = pb(M1) · S · qb(M2).

He sends B to Alice and keeps pb, qb secret.

• Their common secret key is

k = pa(M1) ·B · qa(M2) = pb(M1) ·A · qb(M2)

= pa(M1) · pb(M1) · S · qb(M2) · qa(M2).

In [42] (also in [41] and [46]), it was argued that the use of simple semirings

is advantageous to avoid Pohlig-Hellman type attacks. The Pohlig-Hellman attack

allows to compute the discrete logarithm in a cyclic group based on the Chinese
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remainder theorem. The complexity of the algorithm depends on the largest prime

factor of the order of the group. To prevent a Pohlig-Hellman attack, the group can

be chosen to be a cyclic group of large prime order, which means that the group is a

simple group. In order to prevent a similar attack on cryptosystems using semirings,

the use of simple semirings was suggested. If the used semiring would not be simple,

the semigroup action problem could be solved in some quotient semirings from which

one may gain some information to solve the semigroup action problem in the original

semiring.

Also the use of proper semirings was suggested to minimize the possibilities of

attacks based on linear algebra. The classification of finite simple semirings with zero

in [61] enabled a huge choice for an appropriate semiring for the use in Protocol 1.20.

In [42], an example of Protocol 1.20 with some specific parameters was presen-

ted. The chosen semiring had six elements, the matrices had size 20 × 20, and

the polynomials have been bounded to degree at most 50. In [54], Steinwandt and

Corona presented a heuristic attack for Protocol 1.20, which broke the cryptosystem

for the given parameters. Therefore, the parameter sizes of the protocol have to be

increased in order keep the protocol relevant for practical purposes. In particular,

the choice of the semiring can be improved. In fact, the semiring used in the example

is the smallest proper finite simple semiring with zero and more than two elements.

Due to Theorem 1.11 (Theorem 1.10) one can easily construct proper finite simple

semirings with zero with large cardinalities.

1.5 Overview

Semirings and specifically simple semirings were given a new application in the

work of Maze, Monico, and Rosenthal described in Section 1.4.1. After some initial

progress in the classification of finite simple semiring by Monico [45], Zumbrägel’s

complete classification of finite simple semirings with zero in [61] was a step of high

importance for the studies on this topic. The goal of this dissertation is to continue

these studies based on the results in [61]. More precisely, we investigate proper finite

simple semirings with zero regarding cryptographic applications, and we continue

the classification of finite simple semirings by using the ideas from [61].

In Chapter 2, we analyse a cryptosystem proposed in [62]. This cryptosystem

uses a semigroup action that involves residuated mappings. However, only the com-

position of residuated mappings is used. Therefore, no semiring is properly involved

in this cryptosystem. The conclusion of this chapter is that the private key can
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be completely recovered by the public information. The proposed cryptosystem is

therefore insecure.

Chapter 3 deals with the representation of proper finite simple semirings with

zero. The underlying problem is that one needs a representation of semirings as

in Theorem 1.11 that requires little space, enables an efficient performance of the

operations, and most importantly admits a method to generate arbitrary semiring

elements. We find that it is advantageous to store a semiring implicitly by its

generating lattice. Therefore, the question arises how many residuated mappings

there exist of a finite lattice. This problem is also studied in Chapter 3, where we

consider three different approaches.

In Chapter 4, we investigate invertible matrices over finite additively idempotent

semirings. The motivation clearly comes from the cryptographic application of

matrices over finite simple semirings. Since proper finite simple semirings with zero

are additively idempotent, the results of this chapter cover the case of invertible

matrices over such semirings. Due to the fact that every finite additively idem-

potent semiring with zero and one can be represented as a semiring of residuated

mappings, we achieve more general results. The outcome of this chapter is a cri-

terion for matrices over such semirings for being invertible, a construction of the

inverse matrix of an invertible matrix, and a formula for the number of invertible

matrices.

In the last chapter we proceed on the classification of finite simple semirings.

Since all finite simple semirings not yet covered by the classification are additively

idempotent, we attempt to characterise every such semiring as a semiring of join-

morphisms of a finite semilattice. This requires an extensive study of irreducible

semimodules and eventually leads to some characterisation theorems, which are

presented in Section 5.4. Proving these theorems, we complete the classification of

finite simple semirings with an additively neutral element , stated in Theorem 5.63.

Moreover, we present some constructions of semirings, and conjecture that they

complete the classification of finite simple semirings.
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Chapter 2

Analysis of a cryptosystem

using residuated mappings

In [62] a cryptosystem based on semigroup actions was proposed that uses residuated

mappings. We will analyse its security in the current chapter, and we will find out

that the key can be completely recovered by the public information.

2.1 The protocol

To present the cryptosystem, we need vertical sums of ordered sets.

Let P = (P,≤P) be an ordered set with a greatest element 1P and Q = (Q,≤Q)

an ordered set with a least element 0Q. The ordered set (S,≤) is the vertical sum

of P and Q, denoted by P⊕̄Q, if P ∩Q = {1P} = {0Q}, S = P ∪Q, and ≤ satisfies

x ≤ y ⇔ x ≤P y or x ≤Q y or (x, y) ∈ P ×Q

for all x, y ∈ S.

Let L and K be finite lattices and M := L⊕̄K. Define

RL := {f ∈ Res(M) | f |K = idK},

RK := {f ∈ Res(M) | f |L = idL}.

Since every mapping f ∈ RL and every mapping g ∈ RK satisfies f(1L) = f(0K) =

0K = 1L and g(0K) = g(1L) = 1L = 0K, respectively, they also satisfy f(L) ⊆ L and

g(K) ⊆ K. Therefore, the equality f ◦ g = g ◦ f holds for all f ∈ RL and g ∈ RK.
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The following protocol from [62, Section 4.2.1] is the one that we will analyse.

Protocol 2.1.

• Alice and Bob publicly agree on two finite lattices L and K and choose an

element h ∈ Res(L⊕̄K).

• Alice chooses fA ∈ RL and gA ∈ RK. She sends fA ◦ h ◦ gA to Bob and keeps

fA and gA secret.

• Bob chooses fB ∈ RL and gB ∈ RK. He sends gB ◦ h ◦ fB to Alice and keeps

fB and gB secret.

• Their common secret key is

k = fA ◦ (gB ◦ h ◦ fB) ◦ gA = gB ◦ (fA ◦ h ◦ gA) ◦ fB.

Note that in this protocol just the multiplication of the semiring (Res(L⊕̄K),∨, ◦)
is used. However, the semigroup (Res(L⊕̄K), ◦) is not necessarily simple. Therefore,

there exists no reason to restrict to the residuated mappings of L⊕̄K. In fact, one

could use any mappings that satisfy f |K = idK and f(L) ⊆ L or f |L = idL and

f(K) ⊆ K, respectively. Moreover, it is not necessary to consider mappings of lat-

tices. Instead one can use mappings of arbitrary sets. To analyse the cryptosystem,

we will use this more general viewpoint. More precisely, we will use the following

setting:

Let X be a finite set, let U and V be two subsets of X satisfying U ∪ V = X,

let T (X) := {f | f : X → X}, and define

RU := {f ∈ T (X) | f |V = idV , f(U) ⊆ U},

RV := {f ∈ T (X) | f |U = idU , f(V ) ⊆ V }.

Then we have that f ◦ g = g ◦ f for all f ∈ RU and g ∈ RV .

Now we will reformulate Protocol 2.1 in terms of this more general setting.

Protocol 2.2.

• Alice and Bob publicly agree on two finite sets U and V and a mapping

h ∈ T (U ∪ V ).

• Alice chooses fA ∈ RU , gA ∈ RV , and computes α = fA ◦ h ◦ gA. She sends α

to Bob and keeps fA and gA secret.
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• Bob chooses fB ∈ RU , gB ∈ RV , and computes β = gB ◦ h ◦ fB . He sends β

to Alice and keeps fB and gB secret.

• Their common secret key is

k = fA ◦ β ◦ gA = gB ◦ α ◦ fB.

2.2 The analysis

Clearly, if one can break Protocol 2.2, then one can break Protocol 2.1 as well. We

presume for both cryptosystems that each mapping is represented by a sequence.

This means if X = {x1, ..., xn} is a finite set and f ∈ T (X), then f is represented

by the sequence (f(x1), ..., f(xn)). Therefore, the key size of each private and each

public key is |X|. In particular, the secret key k has the key size |X|. If one wants to

recover the key k in Protocol 2.2, then one has to determine k(x) for every x ∈ U∪V .

The following lemma provides some technical statements, which are needed to

prove Proposition 2.4. However, since every statement is easy to see, we will omit a

proof.

Lemma 2.3. Let everything as in Protocol 2.2. Furthermore, let u ∈ U and v ∈ V .

Then:

1. β(u) ∈ V ⇔ h ◦ fB(u) ∈ V .

2. α(v) ∈ U ⇔ h ◦ gA(v) ∈ U .

3. α(u) = fA ◦ h(u).

4. β(v) = gB ◦ h(v).

The next proposition shows that the key k in Protocol 2.2 can be completely

recovered from α, β, and h.

Proposition 2.4. Let everything as in Protocol 2.2. Furthermore, let u ∈ U and

v ∈ V . Then:

1. If β(u) ∈ V , then k(u) = β(u).

2. If β(u) /∈ V , then h−1(β(u)) ∩ U is nonempty and k(u) = α(x) for every

x ∈ h−1(β(u)) ∩ U .

3. If α(v) ∈ U , then k(v) = α(v).
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4. If α(v) /∈ U , then h−1(α(v)) ∩ V is nonempty and k(v) = β(x) for every

x ∈ h−1(α(v)) ∩ V .

Proof. 1.: For u, we have k(u) = fA ◦ β ◦ gA(u) = fA ◦ β(u) since gA|U = idU .

Because of fA|V = idV and β(u) ∈ V , it follows that k(u) = β(u).

2.: Let β(u) /∈ V . By Lemma 2.3, this is equivalent to h ◦ fB(u) /∈ V . Thus,

h ◦ fB(u) ∈ U . Because of gB|U = idU , we find that h ◦ fB(u) = gB ◦ h ◦ fB(u) =

β(u). Hence, fB(u) ∈ h−1(β(u)) ∩ U . Now let x ∈ h−1(β(u)) ∩ U . It follows that

k(u) = fA ◦ β ◦ gA(u) = fA ◦ β(u) = fA ◦ h(x). By x ∈ U and Lemma 2.3, we

get k(u) = fA ◦ h(x) = α(x).

3. and 4. can be proven analogously to 1. and 2., respectively.

Because of this proposition, Protocol 2.1 and Protocol 2.2 can be considered

insecure. Indeed, k can be recovered from α, β, and h in Protocol 2.2, which are

known. Fix an element u ∈ U . If β(u) ∈ V , then k(u) = β(u). Therefore, only one

look-up is necessary to recover k(u). But also if β(u) /∈ V , then k(u) can be easily

recovered. In fact, one only has to find an element x ∈ h−1(β(u))∩U . Therefore, one

can check successively for every element u′ ∈ U if h(u′) = β(u) is fulfilled until one

finds an element u0 ∈ U that fulfills h(u0) = β(u). Then k(u) = α(u0) holds. Hence,

at most |U | look-ups are necessary to recover k(u) in this case. Consequently, at most

|U |2 look-ups are necessary to recover k|U . Analogously, one can show that at most

|V \ U |2 look-ups are necessary to recover kV \U . Therefore, at most |U |2 + |V \ U |2

look-ups are necessary to recover k, which is upper bounded by |X|2 for X = U ∪V .

Since each key has the key size |X|, the effort to break Protocol 2.2 is at most

quadratic in the size of the keys.

In the more specific Protocol 2.1, where the lattice M = L⊕̄K is used, the key

size of the secret key k is |M | and there are at most |M |2 look-ups necessary to

recover k.
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Chapter 3

Representation and cardinalities

of finite simple semirings

In order to use semirings for cryptography, one has to represent their elements in

a way that can be handled by a computer. A naive way of doing this could be to

store the addition and the multiplication table of a finite semiring. In this case the

performance of addition and multiplication is very efficient since every addition and

every multiplication can be performed by a simple table look-up. This, however,

will be practicable only for semirings of small size, as otherwise the operation tables

require by far too much memory resources. For cryptographic applications, obviously

semirings with a huge cardinality are required. If one is interested in using proper

finite simple semirings with zero, one can make use of Theorem 1.11. The idea is then

to store merely a finite lattice L, which can be done e.g. by storing one of its operation

tables (supremum or infimum) or alternatively the order relation represented as a

table with binary entries. Since one has to perform pointwise supremum operations,

the supremum table seems to be the best choice at first sight. After this, there are

two options: The first one is to compute and store every residuated mapping of L.

If one wants to use a dense subsemiring of (Res(L),∨, ◦) instead of (Res(L),∨, ◦),
then one can restrict to this subsemiring. The performance of the operations behaves

very well, due to the fact that pointwise supremum and composition are inexpensive

to compute. However, depending on the lattice, the cardinality of Res(L) may be

huge and storing will require again a lot of memory. Also the computation of all

residuated mappings is computationally expensive. For this reason, this option is

not practicable.

The second option is to generate a ‘random’ residuated mapping whenever it is
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required. The performance of the semiring operations is the same as in the first

option, i.e. computationally inexpensive, and there is no memory required to store

Res(L). All that has to be stored is L. The appearing problem now is to generate

‘random’ residuated mappings. Section 3.1 deals with this problem.

Another problem is to make sure that the cardinality of the used semiring is

sufficiently large. Otherwise the security relevant problems of a semiring based

cryptosystem such as Protocol 1.20 could be easily solvable. Therefore, lower bounds

on the size of these semirings in terms of the lattice size are desirable. This problem

is discussed in Section 3.2.

Many results of this chapter are based on a collaboration with Stefan E. Schmidt,

which are partly published in [34].

3.1 Representation of semirings

In this section we will present two solutions for the problem of generating ‘random’

residuated mappings. The first one works for the smallest dense subsemiring of

(Res(L),∨, ◦) only. It follows almost immediately from the definition of density and

will be described in Section 3.1.1. The second solution works for the semiring of all

residuated mappings of a finite lattice. Instead of representing semiring elements as

residuated mappings, we will do this in terms of so-called bonds, which are objects

intensively studied in Formal Concept Analysis (FCA). To accomplish this, we will

give a short introduction into formal concept analysis in Section 3.1.2. Our bond-

based solution will be then described in Section 3.1.3.

3.1.1 The semiring of tight residuated mappings

We start this section with introducing adjunctions and Galois connections, which

are strongly connected to residuated mappings. Adjunctions and Galois connections

will also be used in Section 3.2.

Adjunctions and Galois connections

Let P = (P,≤) and Q = (Q,≤) be ordered sets. A pair (f, g) of mappings f : P → Q

and g : Q→ P is called an adjunction of (P,Q) if it satisfies

f(x) ≤ y ⇔ x ≤ g(y)
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for all x ∈ P , y ∈ Q. It is called a Galois connection if it satisfies

f(x) ≤ y ⇔ x ≥ g(y)

for all x ∈ P , y ∈ Q. By Adj(P,Q) we denote the set of all adjunctions of (P,Q) and

by Gal(P,Q) the set of all Galois connections of (P,Q). Obviously, a pair (f, g) is

an adjunction of (P,Q) iff it is a Galois connection of (P,Qd). The following propo-

sition states the connection between residuated mappings and adjunctions (cf. [7]):

Proposition 3.1. Let P and Q be ordered sets. Then (f, g) is an adjunction of

(P,Q) iff f is a residuated mapping from P to Q with residual g.

Besides [7] one may also consult [9, 14] for a survey on Galois connections and

adjunctions.

Tight residuated mappings

Raney defined tight Galois connections between complete lattices in [48] as follows:

Let L and K be complete lattices. A Galois connection (f, g) of (L,K) is called

tight if f(x) =
∧
y�x

∨
z�y f(z) holds for every x ∈ L. We will call an adjunction

(f, g) of (L,K) tight if (f, g) is a tight Galois connection of (L,Kd). Furthermore,

we call a residuated mapping f from L to K tight if f is the first part of a tight

adjunction of (L,K). Schreiner showed in [51] with reference to Shmuely [53] that

a residuated mapping f from L to K is tight iff it is the pointwise supremum of

a family of mappings of the form ea,b as defined in Section 1.3.1. The following

is [1, Lemma 1.3]:

Lemma 3.2. For complete lattices K,L,M,N, f ∈ Res(K,L), g ∈ Res(L,M), and

h ∈ Res(M,N), the residuated mappings g ◦f and h◦g are tight whenever g is tight.

Moreover, the tight residuated mappings in Res(L,M) are closed under ∨.

For a complete lattice L, let E(L) denote the set of all tight residuated mappings

in Res(L). By Lemma 3.2, E(L) is closed under ∨ and ◦. Consequently, (E(L),∨, ◦)
is a subsemiring of (Res(L),∨, ◦).

In particular, if L is a finite lattice, then (E(L),∨, ◦) is the smallest dense sub-

semiring of (Res(L),∨, ◦). Raney showed in [48, Theorem 2] that any Galois con-

nection between two finite lattices is tight if one of these lattices is distributive.

Therefore, any residuated mapping of a finite distributive lattice L is tight and
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hence, we find that E(L) = Res(L). There is an obvious way to generate arbitrary

elements in E(L), as every mapping ϕ ∈ E(L) has a representation

ϕ = ea1,b1 ∨ ... ∨ ean,bn (3.1)

for an n ∈ N and some a1, ..., an, b1, ..., bn ∈ L. Therefore, in order to generate

an element in E(L), one can pick arbitrary elements a1, ..., an, b1, ..., bn ∈ L for an

n ∈ N and then compute ϕ := ea1,b1 ∨ ... ∨ ean,bn . It is difficult though to determine

the distribution of the mappings ϕ generated in this manner once random choices

of ai and bi are underlying. Regardless, this algorithm yields arbitrary ϕ, and most

importantly every element in E(L) can be generated in this fashion.

Obviously however, this procedure works just for the semiring (E(L),∨, ◦). If L

is distributive, it works for the semiring (Res(L),∨, ◦) due to the equality E(L) =

Res(L). In order to generate elements of the semiring (Res(L),∨, ◦) or another

dense subsemiring thereof (except (E(L),∨, ◦)) for a non-distributive lattice L, a

different method is required. A solution for these cases was given by [12], where

an algorithm was presented to generate so-called biclosed relations. These biclosed

relations correspond to bonds in Formal Concept Analysis.

3.1.2 Formal Concept Analysis

In this section we give a brief account of formal concept analysis. For more infor-

mation regarding this topic, one should consult [17] and [16]. The former focuses on

the foundations and the latter also covers applications.

A formal context is a triple K = (G,M, I) consisting of two sets G and M

and a relation I between G and M . The elements of G are called the objects and

the elements of M are called the attributes of K. The relation I is called the

incidence relation of K. For a subset A of G, one defines

A′ := AI := {m ∈M | ∀g ∈ A : gIm} ,

and for a subset B of M , one defines

B′ := BI := {g ∈ G | ∀m ∈ B : gIm} .

For singletons, i.e. for g ∈ G and m ∈M , one also defines

g′ := gI := {g}I and m′ := mI := {m}I .
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A formal concept of K is a pair (A,B) with A ⊆ G, B ⊆ M , A′ = B, and

B′ = A. One calls A the extent and B the intent of the concept (A,B). The

set of formal concepts of K is denoted by B(K), the set of extents of K by Ext(K),

and the set of intents of K by Int(K). If A ⊆ G and B ⊆ M , then (A′′, A′) and

(B′, B′′) are formal concepts. For an object g ∈ G, the concept (g′′, g′) is called an

object concept, and for an attribute m ∈ M , the concept (m′,m′′) is called an

attribute concept. The hierarchical order on B(K) is the order ≤ on B(K)

defined by (A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2 (which is equivalent to B2 ⊆ B1) for

all (A1, B1), (A2, B2) ∈ B(K). The ordered set (B(K),≤) is called the concept

lattice of K and is denoted by B(K). Next we will state the basic theorem on

concept lattices in a shortened form [17, Theorem 3]:

Theorem 3.3 (The Basic Theorem on Concept Lattices). The concept lat-

tice B(K) of a formal context K is a complete lattice. Conversely, every complete

lattice is isomorphic to the concept lattice of a suitable formal context. In particular,

every complete lattice (L,≤) is isomorphic to B(L,L,≤).

For a given complete lattice L = (L,≤), the formal context (L,L,≤) is called

the canonical context of L.

A formal context (G,M, I) is called clarified if g′ = h′ implies g = h for all

g, h ∈ G and m′ = n′ implies m = n for all m,n ∈ M . A clarified formal context

K is called reduced if every object concept is
∨

-irreducible in B(K) and every

attribute concept is
∧

-irreducible in B(K).

Two formal contexts (G,M, I) and (H,N, J) are called isomorphic if there exist

bijective mappings α : G → H and β : M → N with gIm ⇔ α(g)Jβ(m) for all

g ∈ G,m ∈M .

The following is [17, Proposition 12]:

Proposition 3.4. For every finite lattice L, there is up to isomorphism a unique

reduced context K(L) with L ∼= B(K(L)), which is

K(L) := (J(L),M(L),≤ ∩(J(L)×M(L))).

The formal context K(L) for a finite lattice L is also called the standard con-

text of L. This context is the ‘smallest’ formal context whose concept lattice is

isomorphic to L in the following sense: There is no formal context with fewer ob-

jects or attributes such that its concept lattice is isomorphic to L.
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3.1.3 The semiring of bonds

In this section we will introduce bonds and show that the semiring (Res(L),∨, ◦)
for a finite lattice L is isomorphic to a semiring of bonds. Further on, we will

investigate its operations and present a method to generate arbitrary bonds. Bonds

are comprehensively studied in formal concept analysis, but a connection between

bonds and finite simple semirings never appeared in the literature before.

For two sets X and Y , a relation R ⊆ X × Y , and subsets A ⊆ X, B ⊆ Y , we

denote AR := {y ∈ Y | ∀x ∈ A : xRy} and BR := {x ∈ X | ∀y ∈ B : xRy}. As

before, we write xR := {x}R and yR := {y}R for x ∈ X and y ∈ Y .

Definition 3.5. A bond between formal contexts K = (G,M, I) and L = (H,N, J)

is a relation R ⊆ G×N such that

• ∀g ∈ G : gR ∈ Int(L) and

• ∀n ∈ N : nR ∈ Ext(K).

By Bo(K,L) we denote the set of all bonds between K and L and we define

Bo(K) := Bo(K,K).

Example 3.6. Consider the following formal context L = (G,M, I) with object set

G = {g1, g2}, attribute set M = {m1,m2}, and incidence relation I = {(g1,m2)},
which can be expressed by the following table:

L m1 m2

g1 ×
g2

Then the set Bo(L) consists of the following six bonds:

R1 =

m1 m2

g1 × ×
g2 × ×

R2 =

m1 m2

g1 × ×
g2 ×

R3 =

m1 m2

g1 × ×
g2

R4 =

m1 m2

g1 ×
g2 ×

R5 =

m1 m2

g1 ×
g2

R6 =

m1 m2

g1

g2
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The next proposition is [17, Corollary 112].

Proposition 3.7. If R is a bond between formal contexts K = (G,M, I) and

L = (H,N, J), then (ϕR, ϕ
+
R) with

ϕR : B(K) −→ B(L), (A,AI) 7−→ (ARJ , AR) and

ϕ+
R : B(L) −→ B(K), (BJ , B) 7−→ (BR, BRI)

is an adjunction of (B(K),B(L)). If (ϕ,ϕ+) is an adjunction of (B(K),B(L)), then

Rϕ := R(ϕ,ϕ+) := {(g, n) ∈ G×N | ϕ(gII , gI) ≤ (nJ , nJJ)}

= {(g, n) ∈ G×N | (gII , gI) ≤ ϕ+(nJ , nJJ)}

is a bond between K and L. These constructions are inverse to each other.

Due to this proposition, there is a one-to-one correspondence between bonds and

adjunctions, and therefore also between bonds and residuated mappings.

Example 3.8. Let L = ({0, 1, 2},≤) be the total order of three elements. Then

Res(L) consists of the following six mappings:

0 1 2

ϕ1 0 0 0

ϕ2 0 0 1

ϕ3 0 0 2

ϕ4 0 1 1

ϕ5 0 1 2

ϕ6 0 2 2

The concept lattice B(L) of the context L from Example 3.6 is isomorphic to L, and

the mapping ϕi corresponds the bond Ri from Example 3.6 for every i = 1, ..., 6.

In the following we denote for two formal contexts K and L

Adj(K,L) := Adj(B(K),B(L)),

Res(K,L) := Res(B(K),B(L)),

Res(K) := Res(K,K),

and we define the order ≤ on Adj(K,L) by (ϕ,ϕ+) ≤ (ψ,ψ+) :⇔ ϕ ≤ ψ for
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(ϕ,ϕ+), (ψ,ψ+) ∈ Adj(K,L). Hence, we have

(Res(K,L),≤) ∼= (Adj(K,L),≤).

Furthermore, for two adjunctions (ϕ,ϕ+), (ψ,ψ+) ∈ Adj(K,L), the equivalence

ϕ ≤ ψ ⇔ ϕ+ ≥ ψ+

holds (see [7]).

Proposition 3.9. If K = (G,M, I) and L = (H,N, J) are formal contexts, then

(Res(K,L),≤) ∼= (Adj(K,L),≤) ∼= (Bo(K,L),⊇).

In particular, if (ϕ,ϕ+), (ψ,ψ+) ∈ Adj(K,L), then

ϕ ≤ ψ ⇔ ϕ+ ≥ ψ+ ⇔ Rϕ ⊇ Rψ.

Proof. Let (ϕ,ϕ+), (ψ,ψ+) ∈ Adj(K,L) and (g, n) ∈ Rψ. If (ϕ,ϕ+) ≤ (ψ,ψ+),

then ϕ(gII , gI) ≤ ψ(gII , gI) ≤ (nJ , nJJ). Thus, (g, n) ∈ Rϕ. Consequently,

Rϕ ⊇ Rψ. Now let Rψ ⊆ Rϕ and (A,AI) ∈ B(K). We find that ARψ ⊆ ARϕ .

Hence, ϕ(A,AI) = (ARϕJ , ARϕ) ≤ (ARψJ , ARψ) = ψ(A,AI). This however shows

ϕ ≤ ψ.

Let K = (G,M, I) and L = (H,N, J) be two formal contexts. We denote by

P(G×N) the powerset ofG×N and by P(G×N) the powerset lattice (P(G×N),⊆)

of G × N . In [12, Proposition 3.1] it was shown that Bo(K,L) is a closure system

of P(G ×N). Hence, (Bo(K,L),⊆) is a complete lattice with inf{R,R′} = R ∩ R′

for all R,R′ ∈ Bo(K,L). Consequently, (Bo(K,L),⊇) is a complete lattice with

sup{R,R′} = R ∩R′ for all R,R′ ∈ Bo(K,L).

Corollary 3.10. If K and L are formal contexts and R,S, T ∈ Bo(K,L), then

R = S ∩ T ⇔ ϕR = ϕS ∨ ϕT ⇔ ϕ+
R = ϕ+

S ∧ ϕ
+
T .

In particular:

(Res(K,L),∨) ∼= (Bo(K,L),∩).

We saw that the pointwise supremum in Res(K,L) corresponds to set inter-

section in Bo(K,L). Next, we would like to describe an operation on the set of
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bonds that corresponds to the composition of residuated mappings. For that, we

need [17, Proposition 84]:

Proposition 3.11. Let Ki = (Gi,Mi, Ii) be formal contexts for i = 1, 2, 3,

R12 ∈ Bo(K1,K2), and let R23 ∈ Bo(K2,K3). Then

R12 ◦R23 := {(g,m) ∈ G1 ×M3 | gR12I2 ⊆ mR23}

is a bond from K1 to K3.

Proposition 3.12. Let Ki = (Gi,Mi, Ii) be formal contexts for i = 1, 2, 3, and

let R12 ∈ Bo(K1,K2), R13 ∈ Bo(K1,K3), R23 ∈ Bo(K2,K3). Furthermore, let

(ϕ12, ϕ
+
12), (ϕ13, ϕ

+
13), (ϕ23, ϕ

+
23) be the corresponding adjunctions as in Proposi-

tion 3.7. Then

ϕ13 = ϕ23 ◦ ϕ12 ⇔ ϕ+
13 = ϕ+

12 ◦ ϕ
+
23 ⇔ R13 = R12 ◦R23.

In particular

(Res(K1), ◦) ∼= (Bo(K1), ◦d),

where R ◦d R′ := R′ ◦R for all R,R′ ∈ Bo(K1).

Proof. The first equivalence follows by [7, Theorem 2.8]. A proof for the second

equivalence can be found in [15, Proposition 13].

The semiring (Bo(K),∩, ◦)

A combination of Corollary 3.10 and Proposition 3.12 yields the following theorem.

Theorem 3.13. Let K = (G,M, I) be a formal context, where G and M are finite.

Then (Bo(K),∩, ◦) is a proper finite simple semiring with zero 0Bo = G ×M and

one 1Bo = {(g,m) ∈ G×M | gII ⊆ mI}. In particular, if L is a finite lattice and L
a formal context with B(L) ∼= L, then

(Bo(L),∩, ◦d) ∼= (Res(L),∨, ◦).

In light of Theorem 3.13, one can represent the finite simple semiring

(Res(L),∨, ◦) for a finite lattice L as a semiring of bonds (Bo(L),∩, ◦d) for a suitable

formal context L = (G,M, I). The additive operation is in this case the set-theoretic

intersection of two bonds and the multiplication is the product ◦d as defined in
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Proposition 3.11 and Proposition 3.12. In order to make use of this semiring, it is

required to store the formal context L by storing the incidence relation I as a table

of |G| rows and |M | columns. A bond R in Bo(L) is also a relation between G and

M and can be represented and stored in the same way. The intersection of two

bonds is obviously inexpensive to compute. To multiply two bonds R,R′ ∈ Bo(L),

i.e. to compute

R ◦d R′ = R′ ◦R = {(g,m) ∈ G×M | gR′I ⊆ mR},

one has to compute gR
′I for every g ∈ G and then to check if gR

′I ⊆ mR is satisfied

for all g ∈ G and m ∈ M . This check is easy to perform since mR corresponds to

one column in the corresponding table of R and gR
′I can be identified as a column in

the same way. Therefore, a number of |G| computations of the form gR
′I combined

with |G| · |M | checks accomplish a single multiplication of two bonds.

As a suitable formal context to a given finite lattice L = (L,≤) one could choose

for example the canonical context L = (L,L,≤). Another choice could be the

standard context K(L) of L. The advantage of this latter context is that it is

the smallest formal context whose concept lattice is isomorphic to L. This means

it is the context that requires the least space of all. The corresponding table of

the incidence relation of K(L), which has to be stored, has exactly |J(L)| · |M(L)|
elements. However, to use this formal context it will be required to compute all join-

and all meet-irreducible elements of L. Alternatively, one could take the canonical

context L = (L,L,≤) and compute its reduced context. The way how this can be

done is described in [17], but it is essentially the same as computing all join- and all

meet-irreducible elements of L.

Using a semiring of bonds does not require any knowledge about the lattice

structure of the corresponding concept lattice. This means we may start rather with

choosing a formal context L instead of a lattice. Then we know that (Bo(L),∩, ◦d)
and also (Bo(L),∩, ◦) are proper finite simple semirings with zero. Additionally

there holds (Bo(L),∩, ◦d) ∼= (Res(B(L)),∨, ◦), which is however not important for

the implementation, and it is not required either to know the structure of B(L).

To keep the storage performance most efficient, one can initially choose a reduced

formal context.
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Generating bonds

Now we come to the advantage of using a semiring of bonds. As mentioned earlier,

an algorithm to generate bonds was presented in [12]. In that paper, bonds have

been called biclosed relations in a slightly different setting. Here, we will state the

algorithms in terms of formal concept analysis.

Let K = (G,M, I) and L = (H,N, J) be two formal contexts. Since Bo(K,L)

is a closure system of P(G × N), there exists a corresponding closure operator

Γ : P(G×N)→ Bo(K,L). Define Γ1,Γ2 : P(G×N)→ P(G×N) by

Γ1(R) := {(g, n) ∈ G×N | n ∈ gRJJ} and

Γ2(R) := {(g, n) ∈ G×N | g ∈ nRII}.

The following statement is [12, Proposition 3.3].

Proposition 3.14. Let K = (G,M, I) and L = (H,N, J) be two formal contexts

and R ∈ P(G×N). If G and N are finite, then there exists an integer k ≤ |G×N |
such that (Γ1Γ2)

k(R) = Γ(R).

If one of the concept lattices of the contexts in Proposition 3.14 is distributive,

then one can derive a more precise statement (cf. [12, Corollary 7.1]):

Proposition 3.15. Let K = (G,M, I) and L = (H,N, J) be two formal contexts

and R ∈ P(G×N). If G and N are finite and B(K) or B(L) is distributive, then

the equality Γ(R) = Γ1Γ2Γ1(R) holds.

Now we will state the algorithms for Γ1, Γ2, and Γ, which have been presented

in [12].

Algorithm 3.16. (Determination of Γ1)

1. change1 ← false

2. for all g ∈ G do

3. Y ← gR

4. if Y JJ 6= Y then

5. change1 ← true

6. for all n ∈ Y JJ

7. (g, n) ∈ R
8. end for

9. end if

10. end for
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Algorithm 3.17. (Determination of Γ2)

1. change2 ← false

2. for all n ∈ N do

3. X ← nR

4. if XII 6= X then

5. change2 ← true

6. for all g ∈ XII

7. (g, n) ∈ R
8. end for

9. end if

10. end for

Algorithm 3.18. (Determination of Γ)

1. repeat

2. R← Γ1(R)

3. R← Γ2(R)

4. until (change1 =false) and (change2 =false)

5. return

Consequently, in order to generate an arbitrary element of the semiring

(Bo(L),∩, ◦d) for a given formal context L = (G,M, I), one randomly chooses a

subset S of G ×M and computes the bond R := Γ(S). It will be again difficult to

determine the distribution of the occurring bonds R in general, as particular prop-

erties of Γ will have an influence on this distribution. Regardless, every element in

Bo(L) can be generated in this fashion.

Due to Proposition 3.15, one might argue to stick to formal contexts with a

distributive concept lattice to increase the efficiency of computing Γ. However, we

know that if L is a formal context such that B(L) is finite and distributive, then

(Bo(L),∩, ◦d) ∼= (Res(B(L)),∨, ◦) and Res(B(L)) = E(B(L)). This means instead

of using bonds we could equally well use the method discussed in Section 3.1.1.

3.2 Cardinalities of semirings

To find the cardinalities of the set Res(L) of residuated mappings and the set E(L)

of tight residuated mappings by exact formulas, which are efficiently computable

also for large lattices L, is a goal that appears to be out of reach. However, we

present methods to compute |Res(L)| and |E(L)| in reasonable time for lattices of
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small size. These allow us to compute the cardinalities for each lattice L up to 14

elements, and in particular to find

MinRn := min{|Res(L)| | L is a lattice, |L| = n}

MinEn := min{|E(L)| | L is a lattice, |L| = n}

for n ≤ 14. Our method is still capable to compute |Res(L)| and |E(L)| for a single

lattice of order slightly larger than 14. However, as the number of lattices having

cardinality n > 14 grows too fast (for example, there are already 152 233 518 lattices

of cardinality 15, see [29]) it becomes infeasible to compute MinRn and MinEn

for larger values of n with these methods. A motivation for computing MinRn

and MinEn for small n ∈ N was to look for a special pattern in the lattices that

admit these minimal cardinalities, with the goal to predict these lattices for further

values of n. Although some pattern was found for small n, we are unfortunately

unable to suggest the desired predictions for larger n. We present our computing

method and the results for MinEn in Section 3.2.1, and for MinRn in Section 3.2.3.

The computation of MinRn depends on a characterisation of adjunctions, which we

explain in Section 3.2.2.

Since we introduced the method to store a lattice by storing a reduced formal

context in Section 3.1, it is also interesting to know the cardinality of the set of

bonds Bo(L) for a given reduced formal context L. Again, to find an exact formula

for |Bo(L)| for contexts L of arbitrary size appears to be impossible. However, we

compute the lower bound |E(B(L))| of |Bo(L)| = |Res(B(L))| with the method we

use to compute E(L) for a finite lattice L. In Section 3.2.1 we see that elements in

E(B(L)) correspond to regular dual bonds, and in fact we count these regular dual

bonds. This method allows us to find

MinBn := min{|E(B(L))| | L = (G,M, I) is a reduced context, |G| = |M | = n}

for every n ≤ 7. In this case, when looking at the concept lattices of the contexts

that admit a minimal number of regular dual bonds, there is enough special pattern

to state a conjecture predicting these lattices for general n ∈ N. Although we did

not find a proof for this conjecture, we are quite confident that it holds, and we also

can provide some evidence. These findings are discussed in Sections 3.2.4 and 3.2.5.
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3.2.1 Cardinality of E(L)

Essential for this section is the concept of a regular dual bond, which belongs to the

theory of formal concept analysis. We will see that regular dual bonds correspond

to tight Galois connections and hence to tight residuated mappings.

Definition 3.19. A dual bond between two formal contexts K = (G,M, I) and

L = (H,N, J) is a relation R ⊆ G×H such that

• ∀g ∈ G : gR ∈ Ext(L) , and

• ∀h ∈ H : hR ∈ Ext(K) .

By Proposition 3.7, bonds correspond to adjunctions. There is an analogous

statement for dual bonds and Galois connections [17, Theorem 53]:

Proposition 3.20. If R is a dual bond between formal contexts K = (G,M, I) and

L = (H,N, J), then (ϕR, ψR), where

ϕR : B(K) −→ B(L), (X,XI) 7−→ (XR, XRJ)

ψR : B(L) −→ B(K), (Y, Y J) 7−→ (Y R, Y RI) ,

is a Galois connection of (B(K),B(L)). Conversely, if (ϕ,ψ) is a Galois connection

of (B(K),B(L)), then

Rϕ,ψ := {(g, h) ∈ G×H | (gII , gI) ≤ ψ(hJJ , hJ)}

= {(g, h) ∈ G×H | (hJJ , hJ) ≤ ϕ(gII , gI)}

is a dual bond between K and L. These constructions are inverse to each other.

Definition 3.21. Given two formal contexts K = (G,M, I) and L = (H,N, J), the

direct product of K and L is the context K× L := (G×H,M ×N,∇), where ∇
is defined by

(g, h)∇(m,n) :⇔ gIm or hJn .

The next proposition gives a first reason why direct products will be of impor-

tance for us [15, Proposition 9]:

Proposition 3.22. If K and L are formal contexts, then every extent of the direct

product K× L is a dual bond between K and L.
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However, the converse of this proposition is not true in general, i.e. there exist

formal contexts and dual bonds between these contexts that are not extents of the

direct product (see [15] for an example). The dual bonds that are extents of the

direct product are of interest to us.

Definition 3.23. A dual bond between formal contexts K and L is called regular

if it is an extent of K × L. A Galois connection (ϕ,ψ) of (K,L) for two complete

lattices K and L is called regular if its associated dual bond Rϕ,ψ between the

canonical contexts of K and L is regular.

Regular dual bonds and regular Galois connections have been investigated in

[37, 38]. It was shown in [38] that the definition of regular Galois connections does

not depend on using the canonical contexts. This means if K and L are two complete

lattices, K and L two formal contexts with B(K) ∼= K and B(L) ∼= L, and (ϕ,ψ)

is a Galois connection of (K,L), then (ϕ,ψ) is regular iff its associated dual bond

Rϕ,ψ between K and L is regular.

Moreover, regular Galois connections can be characterised by the following

proposition [38, Theorem 3]:

Proposition 3.24. Given complete lattices K and L and a mapping ϕ : K → L,

the following are equivalent:

1. The mapping ϕ is the first part of a regular Galois connection of (K,L).

2. For all x ∈ K it holds: ϕ(x) =
∧
y�x

∨
z�y ϕ(z).

The second condition is exactly the definition of tight Galois connections. There-

fore, we obtain the following corollary:

Corollary 3.25. Given complete lattices K and L and two mappings ϕ : K → L

and ψ : L→ K, the following are equivalent:

1. The pair (ϕ,ψ) is a regular Galois connection of (K,L).

2. The pair (ϕ,ψ) is a tight Galois connection of (K,L).

3. The mapping ϕ is a tight residuated mapping from K to Ld.

As a consequence, if one wants to compute the number of tight residuated map-

pings of a complete lattice L, it suffices to count the regular dual bonds between two

formal contexts L1 and L2 satisfying B(L1) ∼= L and B(L2) ∼= Ld. By definition,
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the number of these dual bonds is the same as the number of the extents of the

direct product L1 × L2, which is the same as the number of concepts of L1 × L2.

The duality principle for concept lattices says that for a given formal context

K = (G,M, I) also the triple Kd := (M,G, I−1) with I−1 := {(m, g) ∈M×G | gIm}
is a formal context and moreover

B(K) ∼= B(Kd)d

(cf. [17]). The context Kd is called the dual formal context of K. Therefore,

we can take any formal context K satisfying B(K) ∼= L and count the concepts of

the direct product K × Kd. In particular, we can reduce the context size, which

may increase the efficiency of the counting algorithms. If we pick a suitable reduced

formal context K, then also the direct product K×Kd is reduced [17, Corollary 74].

Hence, for a given finite lattice L, we may take its standard context K(L), compute

the direct product K(L)×K(L)d, and count all concepts of the direct product. We

applied this method for all lattices up to order 14.

There are several algorithms in the literature for computing all concepts of a

formal context. We implemented the Grail algorithm from [59]. The results of the

computations can be found in Table 3.1 and Table 3.2. In Table 3.1, MinEn and

a corresponding lattice that admits MinEn tight residuated mappings is presented

for every n ≤ 14. We do not present the results for n = 1, 2, 3 since in each case

there exists just one lattice. We mention that each lattice in the table that admits

the corresponding minimal number MinEn is essentially unique, in the sense that

only the dual lattice admits the same minimal number. It is not known whether

this uniqueness property holds for general n ∈ N.

For n ≤ 14, let Ln denote the lattice depicted in Table 3.1, which corresponds to

MinEn. Examining the sequence (Ln)n=4,...,14, one recognises that Ln is isomorphic

to a sublattice of Ln+1, for every n ≤ 11, whereas this rule breaks up for n = 12.

Even though there is no order embedding for the cases n = 12 and n = 13, one can

nevertheless observe a similarity of the lattices. However, these findings were not

sufficient to state a conjecture for predicting a lattice Ln with a minimum number

of tight residuated mappings for any n ∈ N, even if we assume that a corresponding

lattice Ln−1 is given.

In Table 3.2, the minimum, the average, and the maximum value of |E(L)| for

lattices with n elements are presented for every n ≤ 14. The minimum value is

exactly the value MinEn. In these experimental results one finds that the minimum
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MinE4 = 16 MinE5 = 42 MinE6 = 98 MinE7 = 210

MinE8 = 410 MinE9 = 744 MinE10 = 1258 MinE11 = 2032

MinE12 = 3120 MinE13 = 4618 MinE14 = 6618

Table 3.1: For every n ∈ N with 4 ≤ n ≤ 14, the number MinEn is presented
together with a lattice, which admits exactly MinEn tight residuated mappings.

and the average value are roughly proportional to 2n. However, a decreasing of the

ratio MinEn /MinEn−1 is recognisable. The same holds for the corresponding ratio

of average values. One also finds that the average value is very close to the minimum

value for small n, but the ratio average/minimum is increasing. In other words, the

minimum value tends to get small with respect to the average value for increasing n.

3.2.2 A characterisation of adjunctions

To compute the number of all residuated mappings of a finite lattice, we will use a

theorem that characterises adjunctions by triples consisting of a closure operator, a

kernel operator, and an isomorphism between the corresponding closure and kernel

systems. We call these triples smart triples. To prove the theorem we will need the

following simple lemma, which can be found in [7].

Lemma 3.26. If (f, g) is an adjunction of (P,Q) for two ordered sets P and Q,
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n minimum average maximum

4 16 18 20
5 42 51 70
6 98 133 252
7 210 322 924
8 410 722 3 432
9 744 1 525 12 870
10 1 258 3 056 48 620
11 2 032 5 850 184 756
12 3 120 10 769 705 432
13 4 618 19 181 2 704 156
14 6 618 33 260 10 400 600

Table 3.2: The minimum, the average, and the maximum value of |E(L)| for lattices
with n elements are presented for every n ≤ 14. The average values have been
rounded to integer values.

then

f ◦ g ◦ f = f and g ◦ f ◦ g = g .

For an ordered set P = (P,≤) and a mapping ϕ : P → P , we will denote in the

following ϕP := (ϕ(P ),≤ ∩(ϕ(P )× ϕ(P ))).

Definition 3.27. Let P and Q be ordered sets. A triple (γ, κ, ϕ) is called a smart

triple of (P,Q) if

• the mapping γ is a closure operator on P,

• the mapping κ is a kernel operator on Q, and

• the mapping ϕ is an order isomorphism from γP onto κQ.

By Sm(P,Q) we denote the set of all smart triples of (P,Q).

The following theorem states a one-to-one correspondence between Sm(P,Q)

and Adj(P,Q) for given ordered sets P and Q. The result is not a novel one. In

fact, already Ore presented the corresponding result for Galois connections between

complete lattices in [47] in 1944, the paper in which, probably for the first time,

the notion of (order theoretic) Galois connections was used. Jürgen Schmidt stated

the result for adjunctions between complete lattices in [50]. A version of the gen-

eral result for adjunctions between arbitrary ordered sets can be found e.g. in [13].

However, we were unable to find a proof for this general result in the literature.

Therefore, we will add here a proof of the theorem.
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Theorem 3.28. Let P and Q be ordered sets. There is a bijection Φ from Sm(P,Q)

onto Adj(P,Q) via

Φ : (γ, κ, ϕ) 7→ (ϕ ◦ γ, ϕ−1 ◦ κ) .

The inverse of Φ is given by the mapping Ψ from Adj(P,Q) onto Sm(P,Q) via

Ψ : (f, g) 7→ (γ, κ, ϕ)

where

γ = g ◦ f, κ = f ◦ g, ϕ : γ(P )→ κ(Q), x 7→ f(x) .

Proof. The proof is given by showing the following properties:

1. The mapping Φ maps into Adj(P,Q).

2. The mapping Ψ maps into Sm(P,Q).

3. The mapping Ψ ◦ Φ is the identity on Sm(P,Q).

4. The mapping Φ ◦Ψ is the identity on Adj(P,Q).

1.: Given a smart triple (γ, κ, ϕ) of (P,Q), let (f, g) := Φ(γ, κ, ϕ) and let

x ∈ P , y ∈ Q such that ϕ(γ(x)) = f(x) ≤ y. By the facts that ϕ maps onto

κ(Q) and κ is idempotent, this is equivalent to κ(ϕ(γ(x))) = ϕ(γ(x)) ≤ y. Ap-

plying Equation 1.2, this is equivalent to κ(ϕ(γ(x))) = ϕ(γ(x)) ≤ κ(y). Since

ϕ−1 is an order isomorphism onto γP and γ is idempotent, this is equivalent to

γ(x) ≤ ϕ−1(κ(y)) = γ(ϕ−1(κ(y))). Finally, by Equation 1.1, this is equivalent to

x ≤ γ(ϕ−1(κ(y))) = ϕ−1(κ(y)) = g(y).

2.: Given an adjunction (f, g) of (P,Q), let (γ, κ, ϕ) := Ψ(f, g). We will

first show that γ is a closure operator on P. Let x, x1, x2 ∈ P . Because of

f(x) ≤ f(x), we find x ≤ g(f(x)) = γ(x). Thus, γ is increasing. Let x1 ≤ x2.

Since f and g are isotone, we have that γ(x1) = g(f(x1)) ≤ g(f(x2)) = γ(x2).

Hence, γ is isotone. That γ is idempotent follows from Lemma 3.26 by γ(γ(x)) =

g(f(g(f(x)))) = g(f(x)) = γ(x). Analogously, it follows that κ is a kernel operator

on Q. To show that ϕ is an order isomorphism, we define the isotone mapping

ω : κ(Q)→ γ(P ) : y 7→ g(y). That ω maps into γ(P ) follows from κ(Q) = (f ◦g)(Q)

and γ(P ) = (g ◦ f)(P ). The isotonicity of ω follows from the isotonicity of g. Now

let x ∈ γ(P ). There exists an element y ∈ P with x = γ(y) = g(f(y)) and it follows

that ω(ϕ(x)) = g(f(g(f(y)))) = g(f(y)) = γ(y) = x. Analogously, we find that
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ϕ(ω(z)) = z holds for z ∈ κ(Q), and it follows that ϕ is an isotone bijection with

isotone inverse mapping ω, i.e. ϕ is an order isomorphism.

3.: Given a smart triple (γ, κ, ϕ) of (P,Q), let (f, g) := Φ(γ, κ, ϕ) and

(γ′, κ′, ϕ′) := Ψ(f, g). For x ∈ P , the equality γ′(x) = g(f(x)) = ϕ−1(κ(ϕ(γ(x))))

holds. Since ϕ(γ(x)) ∈ κ(Q), we have γ′(x) = ϕ−1(ϕ(γ(x))) = γ(x). Analogously,

it follows that κ′ = κ. For x ∈ γ(P ), we have ϕ′(x) = f(x) = ϕ(γ(x)) and because

of x ∈ γ(P ), we find γ(x) = x and so ϕ′(x) = ϕ(x). Thus, (γ, κ, ϕ) = (γ′, κ′, ϕ′).

4.: Given an adjunction (f, g) of (P,Q), let (γ, κ, ϕ) := Ψ(f, g) and (f ′, g′) :=

Φ(γ, κ, ϕ). For x ∈ P , we get f ′(x) = ϕ(γ(x)) = f(g(f(x))) = f(x). Hence, f ′ = f .

Analogously, it follows that g′ = g. Thus, (f ′, g′) = (f, g).

3.2.3 Number of adjunctions between two ordered sets

We will apply Theorem 3.28 to determine the number of adjunctions between two

ordered sets. Instead of closure and kernel operators, we will use in this section

closure and kernel systems for technical reasons. Since the set of all closure operators

(kernel operators) on an ordered set P corresponds bijectively to the set of all closure

systems (kernel systems) of P (cf. [7, Theorem 4.5]), there is no difference in counting

the closure operators (kernel operators) and in counting the closure systems (kernel

systems) of P. For an ordered set P = (P,≤) and a subset A of P , we denote in the

following AP := (A,≤ ∩(A×A)). By Theorem 3.28, we have

|Adj(P,Q)| =
∑

A∈C(P)

∑
B∈K(Q)

|{ϕ | ϕ is an isomorphism from AP to BQ}| . (3.2)

Clearly, it would be sufficient to sum in the second sum over all B ∈ K(Q) with

AP
∼= BQ. Now let ∼ be the equivalence relation on C(P) that is defined by

A ∼ A′ :⇔ AP
∼= A′P for A,A′ ∈ C(P). Analogously, let ≡ be the equivalence

relation on K(Q) that is defined by B ≡ B′ :⇔ BQ
∼= B′Q for B,B′ ∈ K(Q).

Furthermore, let

π : C(P)/∼ → K(Q)/≡ ∪{∅}, [A]∼7→

[B]≡ if AP
∼= BQ ,

∅ if ∀B ∈ K(Q) : AP � BQ ,
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and

σ : K(Q)/≡ → C(P)/∼ ∪{∅}, [B]≡7→

[A]∼ if AP
∼= BQ ,

∅ if ∀A ∈ C(P) : AP � BQ .

Now we can reformulate Equation 3.2 as

|Adj(P,Q)| =
∑

[A]∼∈C(P)/∼

|[A]∼ | · |π([A]∼)| · |Aut(AP)| (3.3)

=
∑

[B]≡∈K(Q)/≡

|[B]≡ | · |σ([B]≡)| · |Aut(BQ)|. (3.4)

With these two equations we determine the number of adjunctions between two

ordered sets.

Cardinality of Res(L)

We implemented Equation 3.3 and computed |Adj(L,L)| = |Res(L)| for every lat-

tice L up to order 14. The results can be found in Table 3.3 and Table 3.4. In

Table 3.3, MinRn and a corresponding lattice that admits MinRn residuated map-

pings are presented for every n ≤ 14. Also here, each lattice is essentially unique,

in the sense that only the dual lattice admits the same minimal number, but it is

unknown whether this uniqueness property holds for general n ∈ N.

Examining the sequence (Ln)n=4,...,14, where Ln is the corresponding lattice to

MinRn in Table 3.3, one recognises again some pattern. In most cases, Ln is not

isomorphic to a sublattice of Ln+1, but often there is an order embedding from

Ln into Ln+1; more precisely, these order embeddings exist for n = 4, .., 8 and for

n = 10, 11, 12. For n = 9, such an embedding does not exist and it is even hard

to spot a similarity between L9 and L10. For n = 13, such an embedding does not

exist either, however, in this case one recognises a similarity between L13 and L14.

All in all, the recognised structure in the sequence (Ln)n=4,...,14 does not suffice to

find rules that help to make a prediction for a lattice Ln with MinRn residuated

mappings for any n ∈ N, even when Ln−1 is known.

In Table 3.4, the minimum, the average, and the maximum value of |Res(L)|
for lattices with n elements are presented for every n ≤ 14. The minimum value is

exactly the value MinRn. Similar to the results for |E(L)|, one can recognise that

the minimum and the average value are roughly proportional to 2n and that the ratio

MinEn /MinEn−1 is decreasing. One also finds that the average value is very close
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MinR4 = 16 MinR5 = 43 MinR6 = 106

MinR7 = 238 MinR8 = 512 MinR9 = 1083

MinR10 = 2124 MinR11 = 3921 MinR12 = 7177

MinR13 = 12399 MinR14 = 21131

Table 3.3: For every n ∈ N with 4 ≤ n ≤ 14, the number MinRn is presented
together with a lattice, which admits exactly MinRn residuated mappings.
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n minimum average maximum

4 16 18 20
5 43 53 70
6 106 148 252
7 238 395 1 582
8 512 992 13 376
9 1 083 2 344 130 986
10 2 124 5 013 1 441 810
11 3 921 10 761 17 572 214
12 7 177 22 201 234 662 352
13 12 399 46 039 3 405 357 826
14 21 131 89 517 53 334 454 586

Table 3.4: The minimum, the average, and the maximum value of |Res(L)| for
lattices with n elements are presented for every n ≤ 14. The average values have
been rounded to integer values.

to the minimum value for small n, but the ratio average/minimum is increasing. In

other words, the minimum value tends to get small with respect to the average value

for increasing n.

3.2.4 Number of regular dual bonds

In this section we consider the number of bonds for a given reduced formal context L.

This is relevant when using the semiring of bonds (Bo(L),∩, ◦) for cryptographic

purposes. However, we encountered some difficulties when computing the number

of all bonds to a given reduced context. Indeed, if we compute the concept lattice

B(L) and apply the results from Section 3.2.3 to compute |Res(B(L))| = |Bo(L)|,
the size of the concept lattice gets rather large compared to the number of objects

and attributes of a reduced context. Therefore, this method works efficiently only

for very small reduced contexts. Instead, we apply the method from Section 3.2.1 to

compute a lower bound for the number of bonds. This works because of the obvious

fact that R is a bond between formal contexts K and L iff R is a dual bond between

K and Ld. Hence, if a reduced formal context L is given, we compute the regular

dual bonds between L and Ld, by which we obtain the number |E(B(L))|, which is

a lower bound of |Res(B(L))| = |Bo(L)|.
We restrict the study to the case that the number of objects in a reduced con-

text equals the number of attributes. More precisely, we compute the number of

regular dual bonds between L and Ld for every reduced context with n objects and
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n attributes for every n ≤ 7. The results can be found in Table 3.5, where MinBn,

a corresponding reduced context that admits MinBn regular dual bonds, and the

concept lattice of the context are presented for every n ≤ 7.

If one looks at the lattices in Table 3.5, then one recognises a similarity of all

lattices. Namely, each lattice is a horizontal sum of chains: A chain (or totally

ordered set) is an ordered set P with x ≤ y or x ≥ y for all x, y ∈ P . An

ordered set is called bounded if it has a least and a greatest element. The ordered

set P = (P,≤) is the horizontal sum of the bounded ordered sets (Pi,≤i)i∈I if

P =
⋃
i∈I Pi with Pi ∩ Pj = {0P, 1P} whenever i 6= j, and x ≤ y iff there exits an

i ∈ I such that {x, y} ⊆ Pi and x ≤i y. If each bounded ordered set (Pi,≤i) is a

chain, then P is a horizontal sum of chains.

Due to this observation and also for reasons that are explained in Remark 3.30

and in Remark 3.34 below, we have the following conjecture.

Conjecture 3.29. Let RCn denote the set of all reduced contexts with n objects and

n attributes for an n ∈ N. Then there exists a context L ∈ RCn such that B(L) is

a horizontal sum of chains and |E(B(L))| = MinBn.

Remark 3.30. Let L be a reduced formal context with n objects and n attributes

for an n ∈ N. Then the concept lattice of L has at least n + 1 elements because it

has n join-irreducible elements and additionally it has a least element, which is not

join-irreducible. In particular, B(L) has n + 1 elements iff it is a chain. Moreover,

B(L) has n+ 2 elements iff it is a horizontal sum of chains but not a chain. In other

words, if B(L) is a horizontal sum of chains, then it has very few elements compared

to the size of the context. One should note that the concept lattice of L can have

up to 2n elements; this is the case iff L is of the form (G,G, 6=), which is equivalent

to B(L) being isomorphic to the boolean lattice with 2n elements. The fact that

horizontal sums of chains have very few elements with respect to the context size

suggests that they also admit very few residuated mappings. This is one evidence

for Conjecture 3.29. In Section 3.2.5 it will get clear why they admit in particular

very few tight residuated mappings.

We point out that Conjecture 3.29 is equivalent to the following formulation

stated in terms of lattice theory instead of formal concept analysis.

Conjecture 3.31. Let Ln denote the set of all lattices with n join- and n meet-

irreducible elements for an n ∈ N. Then there exists a lattice L ∈ Ln such that L is

a horizontal sum of chains and |E(L)| = min{|E(K)| | K ∈ Ln} .
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x

MinB2 = 6

x x

x

MinB3 = 20

x x x

x x

x

MinB4 = 70

x x x

x x

x

x x

x MinB5 = 216

x x x

x x

x

x x

x

x MinB6 = 418

x x x

x x

x

x x x

x x

x

x MinB7 = 752

Table 3.5: For every n ∈ N with 2 ≤ n ≤ 7, the number MinBn is presented together
with a reduced formal context, which admits exactly MinBn regular dual bonds, and
the concept lattice of the context.
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3.2.5 Tight adjunctions between horizontal sums of chains

Here we want to determine the number of tight adjunctions between two lattices

that are both horizontal sums of finite chains. In the following let (Ci = (Ci,≤i))i∈I
be a collection of finite chains for a finite index set I and let L = (L,≤) be the

horizontal sum of (Ci)i∈I . Analogously, let (C′i = (C ′i,≤i))i∈I′ be a collection of

finite chains for a finite index set I ′ and let K = (K,≤) be the horizontal sum of

(C′i)i∈I′ . First we need a lemma.

Lemma 3.32. Let (f, g) be a tight adjunction of (L,K). Then f(L) has at most

one incomparable pair with respect to the order in K.

Proof. Let (aj)j∈J be a sequence in L and (bj)j∈J a sequence in K for an index set J

such that f =
∨
j∈J eaj ,bj . Assume that there are two incomparable pairs (y1, y2)

and (y3, y4) in f(L) with {y1, y2} 6= {y3, y4}. So yi /∈ {0K, 1K} for i = 1, . . . , 4,

and since every element in K \ {0K, 1K} is join-irreducible, we have y1, . . . , y4 ∈
B := {bj | j ∈ J}. Furthermore, for each i = 1, . . . , 4 there exists an xi ∈ L with

f(xi) = yi and there is a ji ∈ J with xi � aji and yi = f(xi) = bji . Hence, the pairs

(bj1 , bj2) and (bj3 , bj4) are incomparable. We have that aj1 ≤ aj2 implies x2 � aj1 , aj2

and therefore y2 = f(x2) = bj1 ∨ bj2 = 1K, a contradiction. A similar argument

exists for aj2 ≤ aj1 , aj3 ≤ aj4 , aj4 ≤ aj3 , so we know that (aj1 , aj2) and (aj3 , aj4)

are incomparable pairs in L. W.l.o.g. say that bj1 , bj2 , bj3 are pairwise distinct, so

aj1 , aj2 , aj3 are pairwise distinct, too. Moreover, aj3 must be incomparable with aj1

or aj2 . W.l.o.g. say aj1 and aj3 are incomparable. From x1 � aj1 it follows that

x1 ≤ aj2 (otherwise, y1 = f(x1) = bj1 ∨ bj2 = 1K). From x2 � aj2 it follows that

x2 ≤ aj1 . Hence, x2 � aj3 . Consequently, bj2 = f(x2) = bj2 ∨ bj3 . Now we consider

two cases:

Case 1: aj2 , aj3 are incomparable. From x1 ≤ aj2 it follows that x1 � aj3 ,

and therefore bj1 = f(x1) = bj1 ∨ bj3 . So we have bj1 , bj2 ≥ bj3 and it follows that

bj3 = 0K, which is a contradiction.

Case 2: aj2 ≤ aj3 . From x3 � aj3 it follows that x3 � aj2 , and therefore

bj3 = bj2 ∨ bj3 . We find bj2 = bj3 , a contradiction. The case aj2 ≥ aj3 works

analogously.

Since we arrive at a contradiction in both cases, the lemma is proved.

In the following we denote by M2 the boolean lattice with 4 elements, i.e. the

lattice consisting of a least element 0, a greatest element 1, and two further elements

a and b, which are incomparable (see Figure 3.1).

50



3.2. Cardinalities of semirings

0

a b

1

Figure 3.1: The lattice M2.

Proposition 3.33. Let (f, g) ∈ Adj(L,K). Then (f, g) is tight iff (f ◦ g)K is a

chain or isomorphic to M2.

Proof. The “only if” direction follows by (f ◦ g)(K) = f(L) and Lemma 3.32. The

“if” direction follows from the fact that (f, g) is an adjunction of (L, (f ◦ g)K).

Since (f ◦ g)K is distributive, (f, g) must be a tight adjunction of (L, (f ◦ g)K)

(see [38, Theorem 4]). So there exist a1, . . . , ak ∈ L, b1, . . . , bk ∈ f(g(K)) ⊆ K with

f =
∨k
i=1 eai,bi . Thus, f is also a tight residuated mapping from L to K, and so

(f, g) is a tight adjunction of (L,K).

Since (f ◦ g)K is isomorphic to (g ◦ f)L for every (f, g) ∈ Adj(L,K), we just

have to consider closure and kernel systems that are chains or isomorphic to M2.

Let cj be the number of closure systems of L that are chains with j elements and let

kj the number of kernel systems of K that are chains with j elements. Furthermore,

let lj be the number of chains in (Ci)i∈I with |Ci| = j and l′j the number of chains

in (C′i)i∈I′ with |C ′i| = j. Then we have

c1 = 1, c2 = |L| − 1, cj =
∑
i≥j

li

(
i− 1

j − 1

)
for j ≥ 3 , (3.5)

k1 = 1, k2 = |K| − 1, kj =
∑
i≥j

l′i

(
i− 1

j − 1

)
for j ≥ 3 . (3.6)

Let m denote the number of incomparable pairs in L and m′ the number of in-

comparable pairs in K. So the number of closure systems of L isomorphic to M2

equals m and the number of kernel systems of K isomorphic to M2 equals m′. We

have

m =
1

2

∑
i∈I

(|Ci| − 2)(|L| − |Ci|) =
1

2

∑
j≥1

lj(j − 2)(|L| − j) , (3.7)

m′ =
1

2

∑
i∈I′

(|C ′i| − 2)(|K| − |C ′i|) =
1

2

∑
j≥1

l′j(j − 2)(|K| − j) . (3.8)
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Chapter 3. Representation and cardinalities of finite simple semirings

Since |Aut(M2)| = 2 and |Aut(C)| = 1 for any chain C, we find with Equations 3.3,

3.4, and Proposition 3.33 that the number of tight adjunctions between L and K

equals

2mm′ +
∑
i≥1

ciki . (3.9)

With Equations 3.5 - 3.8 this number can be easily computed. In particular we get

|E(L)| = 2m2 +
∑
i≥1

c2i . (3.10)

Remark 3.34. For a finite lattice L, every chain C = (C,≤) in L with 1L ∈ C
(0L ∈ C) is a closure system (kernel system) of L and admits therefore tight resi-

duated mappings of L. Also each incomparable pair (a, b) in L yields the closure

system {a ∧ b, a, b, 1L} and the kernel system {0L, a, b, a ∨ b} of L, which are both

isomorphic to M2. Therefore, each incomparable pair also admits tight residuated

mappings of L. Of course, there might also be closure and kernel systems of L that

are not isomorphic to a chain or M2 admitting further tight residuated mappings

of L. The fact that a horizontal sum of chains possesses closure and kernel systems

isomorphic to a chain or M2 only gives rise to the conjecture that they admit very

few tight residuated mappings. This is another evidence for Conjecture 3.29.

If Conjecture 3.29 is true, then it is easy to compute MinBn. Indeed, for n ∈ N,

one has to consider every partition (d1, ..., dk) of n with at least two nonzero parts

di, dj and one has to compute |E(L)| by Equation 3.10 for the horizontal sum L

of the chains C1, ...,Ck, where Ci has di + 2 elements for every i = 1, ..., k. Then

one knows the number |E(L)| for every horizontal sum of chains L, where L is not

a chain and has n join- and n meet-irreducible elements. Additionally, one has to

compute |E(C)| by Equation 3.10 for the chain with n + 1 elements C. Finally

MinBn is given as the minimum of all these cardinalities.
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Chapter 4

Invertible matrices over finite

additively idempotent semirings

When matrices over semirings are used for cryptographic purposes, as for example in

Protocol 1.20, the principal questions arise how to easily decide whether a matrix is

invertible and, if so, how to compute the inverse matrix. For matrices over fields the

answers to these questions are well-known: A matrix over a field is invertible iff its

determinant is nonzero, and the inverse of an invertible matrix can be computed e.g.

with the help of Gauss-Jordan elimination. A similar useful criterion for invertibility

of matrices over arbitrary semirings is not known in general. There are results for

invertible matrices over boolean algebras [39, 49, 58]. Furthermore, there exist

generalisations to matrices over certain ordered algebraic structures [6], and there

are findings for matrices over Brouwerian lattices [60] and distributive lattices [18].

Also for matrices over certain commutative semirings some results are known [11, 55].

In this chapter we present a criterion for invertible matrices over finite additively

idempotent semirings with zero and one. Moreover, we give a construction for the

inverse of an invertible matrix and a formula for the number of invertible matrices

of a given size over a given semiring. For this, we represent a finite additively

idempotent semiring with zero and one as a semiring of residuated mappings of a

finite lattice. Our results cover the case of invertible matrices over proper finite

simple semirings with zero.

This chapter is based on a collaboration with Stefan E. Schmidt and Jens

Zumbrägel [35].
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Chapter 4. Invertible matrices over finite additively idempotent semirings

4.1 Matrices over additively idempotent semirings

Let (R,+, ·) be a finite additively idempotent semiring. Then the additive semigroup

(R,+) is a semilattice (see Theorem 1.3). In particular, the ordered set (R,≤) with

the order ≤ defined by x ≤ y :⇔ x + y = y for all x, y ∈ R is a join-semilattice

with sup{x, y} = x+ y for all x, y ∈ R. Moreover, if (R,+) has a neutral element 0,

then (R,≤) is a lattice with the least element 0. In particular, if (R,+, ·) is a

finite additively idempotent semiring with zero, then (R,≤) is a lattice. The next

proposition shows that one can embed such a semiring into a semiring of residuated

mappings if it has additionally a one.

Proposition 4.1. Let (R,+, ·) be a finite additively idempotent semiring with zero

and one, R := (R,≤), and

T : R→ Res(R) , r 7→ Tr with Tr : x 7→ rx .

Then (R,+, ·) is isomorphic to the subsemiring (T (R),∨, ◦) of (Res(R),∨, ◦).

Proof. Clearly, Tr ∈ Res(R) for every r ∈ R and T is a semiring homomorphism

between (R,+, ·) and (Res(R),∨, ◦). Since (R,+, ·) has a one 1, we have that Tr = Ts

implies r = Tr(1) = Ts(1) = s for all r, s ∈ R, i.e. T is injective. Hence, (R,+, ·) is

isomorphic to the subsemiring (T (R),∨, ◦) of (Res(R),∨, ◦).

Let I be a finite index set and Mi commutative monoids for every i ∈ I. It is

easy to see that the mapping

Ω : ×
(i,j)∈I×I

Hom(Mj ,Mi)→ End
(×
i∈I

Mi

)
, (fi,j) 7→

(∑
j∈I

fi,j

)
i∈I

with (∑
j∈I

fi,j

)
i∈I

((mj)j∈I) =
(∑
j∈I

fi,j(mj)
)
i∈I

for every (mj)j∈I ∈ End(×j∈I Mj) is an isomorphism between the semirings( ×
(i,j)∈I×I

Hom(Mj ,Mi),+, ◦
)

and
(

End(×
i∈I

Mi),+, ◦
)
,

where + denotes in each case the pointwise sum, ◦ on End(×i∈I Mi) the compo-

sition, and ◦ is defined on ×(i,j)∈I×I Hom(Mj ,Mi) by (fi,j) ◦ (gi,j) =: (hi,j) with
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4.1. Matrices over additively idempotent semirings

hi,j =
∑

k∈I fi,k ◦ gk,j . In particular, it holds that

(
MatI×I(End(M)),+, ·

) ∼= ( ×
(i,j)∈I×I

End(M),+, ◦
)
∼=
(

End(MI),+, ◦
)
,

where MI :=×i∈I M.

If L and K are finite lattices and f : L→ K is a mapping, then f is residuated

iff f is a homomorphism between the monoids (L,∨, 0L) and (K,∨, 0K). Therefore,

for a finite index set S and some finite lattices Ls, we get the following isomorphism

for residuated mappings:( ×
(s,t)∈S×S

Res(Lt,Ls),∨, ◦
)
∼=
(

Res(×
s∈S

Ls),∨, ◦
)
.

Example 4.2. Consider the direct product L = L1 × L2 of two finite lattices L1

and L2. Then a mapping ϕ in Res(L) corresponds to an element(
ϕ11 ϕ12

ϕ21 ϕ22

)
∈ ×
i,j=1,2

Res(Lj ,Li) ,

where ϕi,j ∈ Res(Lj ,Li).

For matrices over Res(L), we get the following corresponding isomorphism:

(
MatI×I(Res(L)),+, ·

) ∼= (Res(LI),∨, ◦
)
.

Therefore, a matrix M ∈ MatI×I(Res(L)) is invertible iff the corresponding residu-

ated mapping

ϕM :=
( ∨
j∈I

mi,j

)
i∈I ∈ Res(LI)

is invertible, which is equivalent to ϕM being bijective.

Lemma 4.3. Let L be a complete lattice and f ∈ Res(L). Then f is an automor-

phism of L iff f is bijective.

Proof. Let f be bijective. For x, y ∈ L, the equivalence x ≤ y ⇔ y = x∨y ⇔ f(y) =

f(x ∨ y) = f(x) ∨ f(y)⇔ f(x) ≤ f(y) holds, i.e. f is an automorphism. The other

direction is clear.

55
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Corollary 4.4. Let L be a finite lattice, I a finite index set, and M ∈
MatI×I(Res(L)). Then M is invertible iff the corresponding mapping ϕM ∈ Res(LI)

is an automorphism of LI .

Hence, we aim to give a characterisation for when a mapping of the direct

product LI is an automorphism of LI . If L is a direct product×t∈T Lt of irredu-

cible lattices Lt, t ∈ T , for a finite index set T , our task is then to determine when

a mapping of the direct product (×t∈T Lt)
I is an automorphism. Consequently,

it suffices to find a criterion for mappings of direct products of irreducible lattices.

We present such a criterion (Theorem 4.10) and we translate it so that we can an-

swer the question when a matrix in MatI×I(Res(L)) is invertible (Corollary 4.11).

We also explain how our results apply to subsemirings of (Res(L),∨, ◦), so that, by

Proposition 4.1, they can be applied to every finite additively idempotent semiring

with zero and one.

4.2 Direct decompositions

In this section we investigate maximal direct decompositions of lattices, on which

our criterion for matrix invertibility will crucially depend.

An algebra A is called trivial if |A| = 1, otherwise it is called nontrivial. We

call an algebra A irreducible if it is nontrivial and not isomorphic to a direct

product of two nontrivial algebras. Analogously, an ordered set P is called trivial if

|P | = 1, otherwise it is called nontrivial. We also call an ordered set P irreducible

if it is nontrivial and not isomorphic to a direct product of two nontrivial ordered

sets. Clearly, the direct product of lattices as ordered sets is the same as the direct

product of lattices as algebras. Consequently, a lattice is irreducible as an ordered

set iff it is irreducible as an algebra.

Definition 4.5. A subdirect decomposition of an algebra A is a family (Θt)t∈T

of congruences of A with ⋂
t∈T

Θt = idA .

We call a subdirect decomposition (Θt)t∈T of A a direct decomposition of A if

the mapping

ι : A→×
t∈T

A/Θt, a 7→
(
[a]Θt

)
t∈T

is surjective. Moreover, we call a direct decomposition (Θt)t∈T of A maximal if
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4.2. Direct decompositions

Θt is non-total for every t ∈ T and if for every direct decomposition (Θs)s∈S of A,

where Θs is non-total for every s ∈ S, the inequality |S| ≤ |T | holds.

For every algebra A and every subdirect decomposition (Θt)t∈T of A the map-

ping ι is an injective homomorphism, and hence A is isomorphic to ι(A). If ι is

even surjective, then A is isomorphic to the direct product ×t∈T A/Θt. If Θt is

non-total for a t ∈ T , then the factor A/Θt is nontrivial.

Let F be a language of algebras, I an index set, Ai a nontrivial F-algebra for

every i ∈ I, and let A := ×i∈I Ai. For an element a ∈ A, we denote the i-th

coordinate of a by ai. Define the congruence Φi := {(a, b) ∈ A × A | ai = bi} for

every i ∈ I. Then (Φi)i∈I is clearly a direct decomposition of A and Φi is non-

total for every i ∈ I. Thus for a maximal direct decomposition (Θt)t∈T of A, the

inequality |T | ≥ |I| holds.

An ordered set (P,≤) is called the sum of the ordered sets (Pi,≤i)i∈I , for an

index set I, if P =
⋃
i∈I Pi, where Pi ∩ Pj = ∅ for all i, j ∈ I with i 6= j, and

x ≤ y ⇔ ∃i ∈ I : x, y ∈ Pi and x ≤i y

for all x, y ∈ P . An ordered set P is called connected if it cannot be decomposed

into the sum of any two ordered sets.

The next proposition is stated in [26].

Proposition 4.6. The representation of a connected ordered set as the direct product

of irreducible ordered sets is unique up to pairwise isomorphism of the factors.

Since a lattice is a connected ordered set, we get the following.

Corollary 4.7. Let S and T be index sets, Lt an irreducible lattice for every t ∈ T ,

L :=×t∈T Lt, and (Θs)s∈S a maximal direct decomposition of L. Then there exists

a bijection σ : S → T with L/Θs
∼= Lσ(s).

For this reason, we may assume that if L is the direct product of the irreducible

lattices Lt, t ∈ T , then a maximal direct decomposition of L is of the form (Θt)t∈T

with L/Θt
∼= Lt for all t ∈ T .

In [23, Chapter 1.3, Theorem 13] the following result is proven.

Theorem 4.8. Let L and K be lattices, let ΘL be a congruence on L, and let ΘK

be a congruence on K. Define the relation ΘL ×ΘK on L×K by

(a, b)(ΘL ×ΘK)(c, d) iff aΘLc and bΘKd .
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Then ΘL ×ΘK is a congruence on L×K. Conversely, every congruence on L×K

is of this form.

Note that ‘ΘL ×ΘK ’ is a slight abuse of notation since it is not identical to the

Cartesian product of the two sets ΘL and ΘK .

It furthermore holds that

[a]ΘL × [b]ΘK = {(c, d) ∈ L×K | aΘLc and bΘKd} = [(a, b)](ΘL ×ΘK) (4.1)

and so

L/ΘL ×K/ΘK = (L×K)/(ΘL ×ΘK) (4.2)

for two lattices L,K and congruences ΘL on L and ΘK on K.

The following result is a strengthening of Corollary 4.7.

Lemma 4.9. Let T be a finite index set, Lt an irreducible lattice for every t ∈ T ,

L :=×t∈T Lt, and (Θt)t∈T a maximal direct decomposition of L. Then there exists

a permutation σ of T with Lt ∼= Lσ(t) and

(xs)s∈TΘσ(t)(ys)s∈T ⇔ xt = yt

for all (xs)s∈T , (ys)s∈T ∈ L and t ∈ T .

Proof. By Corollary 4.7, we may assume that L/Θt
∼= Lt holds for all t ∈ T . We

fix t0 ∈ T and define L′ := ×t∈T\{t0} Lt. Thus, L = Lt0 × L′. By Theorem 4.8,

there exist for every t ∈ T some congruences Θt0
t ∈ Con(Lt0), Θ′t ∈ Con(L′) with

Θt = Θt0
t × Θ′t. We will show that (Θt0

t )t∈T is a direct decomposition of Lt0 . Let

(x, x′) ∈
⋂
t∈T Θt0

t . We have to show that x = x′ holds. Let ȳ ∈ L′. Thus,

(ȳ, ȳ) ∈
⋂
t∈T Θ′t and consequently ((x, ȳ), (x′, ȳ)) ∈

⋂
t∈T Θt = idL. So, we have

(x, ȳ) = (x′, ȳ) and therefore x = x′. Hence, (Θt0
t )t∈T is a subdirect decomposition

of Lt0 . Now let xt ∈ Lt0 for every t ∈ T . We will show that there exists an element

z ∈ Lt0 with [z]Θt0
t = [xt]Θ

t0
t for every t ∈ T . Choose an element (yt)t∈T\{t0} ∈ L′.

For every s ∈ T , we will regard (xs, (yt)t∈T\{t0}) ∈ L as the element in L, where the

t0-th coordinate is xs. Since (Θt)t∈T is a direct decomposition of L, there exists an

element (x̂t)t∈T ∈ L with [(x̂t)t∈T ]Θs = [(xs, (yt)t∈T\{t0})]Θs for every s ∈ T . By

Equation 4.1, for every s ∈ T ,

[x̂t0 ]Θt0
s × [(x̂t)t∈T\{t0}]Θ

′
s = [(x̂t)t∈T ]Θs = [(xs, (yt)t∈T\{t0})]Θs

= [xs]Θ
t0
s × [(yt)t∈T\{t0}]Θ

′
s
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holds and it follows that [x̂t0 ]Θt0
s = [xs]Θ

t0
s . Hence, x̂t0 is the desired element

z and it follows that (Θt0
t )t∈T is a direct decomposition of Lt0 . Consequently,

Lt0
∼=×t∈T (Lt0/Θ

t0
t ) and since Lt0 is irreducible, there exists a unique t1 ∈ T

with Lt0
∼= Lt0/Θ

t0
t1

. Thus, Θt0
t1

= idLt0 . By this and Equation 4.2, it follows that

Lt0 × L′/Θ′t1
∼= Lt0/Θ

t0
t1
× L′/Θ′t1 = (Lt0 × L′)/(Θt0

t1
×Θ′t1) = L/Θt1

∼= Lt1 .

Since Lt1 is irreducible and Lt0 nontrivial, we have Lt0
∼= Lt1 and |L′/Θ′t1 | = 1.

Hence, Θ′t1 = L′ × L′. We derive (xt)t∈TΘt1(yt)t∈T ⇔ xt0 = yt0 for all

(xt)t∈T , (yt)t∈T ∈ L.

We have shown that there exists a mapping σ : T → T with Lt ∼= Lσ(t) and

(xs)s∈TΘσ(t)(ys)s∈T ⇔ xt = yt for all (xs)s∈T , (ys)s∈T ∈ L, t ∈ T . Indeed, with the

notation above, we have t1 = σ(t0). It remains to show that σ is injective. Let t2, t3 ∈
T with σ(t2) = σ(t3). It follows the equivalence xt2 = yt2 ⇔ (xt)t∈TΘσ(t2)(yt)t∈T ⇔
(xt)t∈TΘσ(t3)(yt)t∈T ⇔ xt3 = yt3 for all (xt)t∈T , (yt)t∈T ∈ L and we find that t2 = t3.

4.3 Invertible matrices

A criterion

The following theorem states for a mapping of a direct product of irreducible lattices

a criterion for being an automorphism. It is basically a consequence of Lemma 4.9.

We will see the corresponding result for matrices in Corollary 4.11.

Theorem 4.10. Let T be a finite index set, Lt an irreducible lattice for every t ∈ T ,

L := ×t∈T Lt, and ϕ : L → L a mapping. Then ϕ ∈ Aut(L) iff there exists a

permutation σ of T and an isomorphism ϕt : Lt → Lσ−1(t) for every t ∈ T such that

ϕ = (ϕσ(t) ◦ πσ(t))t∈T ,

where πt is the t-th projection, i.e. ϕ
(
(xt)t∈T

)
=
(
ϕσ(t)(xσ(t))

)
t∈T for all (xt)t∈T ∈ L.

Proof. Let ϕ ∈ Aut(L), ϕt := πt ◦ ϕ for every t ∈ T , and Θt := ker(ϕt) for every

t ∈ T . We will show that (Θt)t∈T is a maximal direct decomposition of L. We have

(x, y) ∈
⋂
t∈T

Θt ⇔ ∀t ∈ T : (x, y) ∈ Θt

⇔ ∀t ∈ T : ϕt(x) = ϕt(y) ⇔ ϕ(x) = ϕ(y) ⇔ x = y
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for all x, y ∈ L, i.e.
⋂
t∈T Θt = idL. Therefore, (Θt)t∈T is a subdirect decomposition

of L. Let yt ∈ L for every t ∈ T . We will show that there exists a z ∈ L satisfying

[z]Θt = [yt]Θt for every t ∈ T . Let xt := ϕt(yt) for every t ∈ T , let x := (xt)t∈T ,

and let z := ϕ−1(x). It follows that ϕt(z) = xt = ϕt(yt) and therefore that zΘty
t

for every t ∈ T . Hence, [z]Θt = [yt]Θt for every t ∈ T and (Θt)t∈T is consequently a

direct decomposition. Since ϕ is bijective, Θt 6= L×L holds for every t ∈ T . Because

a maximal direct decomposition of L has exactly |T | elements by Corollary 4.7,

(Θt)t∈T is a maximal direct decomposition.

By Lemma 4.9, there exists a permutation σ of T with Lt ∼= Lσ(t) and xΘty ⇔
xσ(t) = yσ(t) for every t ∈ T and x, y ∈ L. It follows that ϕt(x) = ϕt(y) ⇔ xΘty ⇔
xσ(t) = yσ(t), i.e. ϕt(x) depends only on xσ(t) for every t ∈ T . Thus the first direction

of the statement follows by ϕσ(t) := ϕt ◦εσ(t), where εs : Ls → L is the s-th canonical

injection. The second direction is trivial.

Let T , I be finite index sets, Lt an irreducible finite lattice for every t ∈ T , and

L :=×t∈T Lt. Then LI =×(t,i)∈T×I Lt,i, where Lt,i = Lt for every (t, i) ∈ T × I.

With this notation, we derive in the following the corresponding result for invertible

matrices. For a matrix A ∈ MatI×I(Res(L)), we will denote the i-th row by Ai and

we will regard Ai as mapping from LI to L.

Corollary 4.11. Let T , I be finite index sets, Lt an irreducible finite lattice for

every t ∈ T , L :=×t∈T Lt, and A ∈ MatI×I(Res(L)). Then A is invertible iff there

exists a permutation σ of T × I and an isomorphism ϕt,i : Lt,i → Lσ−1(t,i) for every

(t, i) ∈ T × I such that

πt ◦Ai = ϕσ(t,i) ◦ πσ(t,i) ,

where πt is the projection from L to Lt and πt,i the projection from LI to Lt,i.

Example 4.12. Let L1 and L2 be two finite lattices, let L = L1 × L2, and

M =

(
a b

c d

)
∈ Mat2×2(Res(L)).

We can consider each entry of M as an element in ×i,j=1,2 Res(Lj ,Li) as in Ex-
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ample 4.2. Then we have the following representation:

M =


a11 a12 b11 b12

a21 a22 b21 b22

c11 c12 d11 d12

c21 c22 d21 d22


Corollary 4.11 states that M is invertible iff each column and each row in this rep-

resentation has exactly one nonzero entry and this nonzero entry is an isomorphism.

E.g. if M has the representation
0 0 b11 0

0 a22 0 0

c11 0 0 0

0 0 0 d22

 ,

where a22, b11, c11, and d22 are isomorphisms, then M is invertible.

If A is invertible, then

ϕA = (ϕσ(t,i) ◦ πσ(t,i))(t,i)∈T×I

is the corresponding mapping to A in Res(LI) and ai,j is of the form ai,j = (ϕ̂i,j,t)t∈T

with

ϕ̂i,j,t =

ϕσ(t,i) if ∃s ∈ T : σ(t, i) = (s, j),

0̄Lt else,

where 0̄Lt is the mapping that maps constantly to 0Lt .

In the special case that L is irreducible we do not have to consider the index set T

since it has just one element. Then the equation in Corollary 4.11 is of the form

Ai = ϕσ(i) ◦ πσ(i) for every i ∈ I, i.e. ai,σ(i) is the only nonzero entry in the i-th row

and ai,σ(i) = ϕσ(i) holds. We call a matrix a generalised permutation matrix

(or monomial matrix) if each row and each column has exactly one nonzero entry

and this nonzero entry is invertible.

Corollary 4.13. Let L be a finite irreducible lattice, I a finite index set, and

A ∈ MatI×I(Res(L)). Then A is invertible iff A is a generalised permutation matrix.
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Number of invertible matrices

As another consequence of Theorem 4.10, we find the following.

Corollary 4.14. Let T be a finite index set, Lt, t ∈ T , pairwise distinct irreducible

lattices, et ∈ N for every t ∈ T , and L :=×t∈T Lett . Then

|Aut(L)| =
∏
t∈T

et! · |Aut(Lt)|et .

In particular, for a finite index set I, we have

|Aut(LI)| =
∏
t∈T

(et · |I|)! · |Aut(Lt)|et·|I| ,

which is exactly the number of invertible matrices in MatI×I(Res(L)).

Example 4.15. Let L be a finite irreducible lattice and n ∈ N. Then there exist

exactly

n! · |Aut(L)|n

invertible matrices in Matn×n(Res(L)). If the lattice L has just one automor-

phism (e.g. if L is a chain), namely idL, then there are n! invertible matrices in

Matn×n(Res(L)), which is exactly the number of n× n permutation matrices.

There tend to be very few invertible matrices over finite additively idempotent

semirings compared to matrices over fields. Consider the following example.

Example 4.16. Let L be the lattice, whose Hasse-diagram is the one in Figure 4.1.

This lattice is irreducible and there exist 50 residuated mappings and two automor-

phisms of this lattice, which means |Res(L)| = 50 and |Aut(L)| = 2. Therefore,

there exist n! · 2n invertible matrices in Matn×n(Res(L)). For example, for n = 3

there exist approximately 1.95 · 1015 matrices in Mat3×3(Res(L)) and 48 of them

are invertible. For comparison, if one considers the 3 × 3 matrices over the finite

field F49, then there exist approximately 1.63 ·1015 such matrices and approximately

1.59 · 1015 of them are invertible.

The inverse matrix

The next proposition provides a construction for the inverse matrix of an invertible

matrix.
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Figure 4.1: The lattice of Example 4.16.

Proposition 4.17. Let T, I be finite index sets, Lt an irreducible finite lattice for

every t ∈ T , L :=×t∈T Lt, let A ∈ MatI×I(Res(L)) be invertible, and σ and ϕt,i

for every (t, i) ∈ T × I as in Corollary 4.11. Then for the inverse matrix B of A,

the entry bi,j for i, j ∈ I is of the form bi,j = (ϕ̌i,j,t)t∈T with

ϕ̌i,j,t =

ϕ−1t,i if ∃s ∈ T : σ−1(t, i) = (s, j),

0̄Lt else.

Proof. As stated before, ϕA = (ϕσ(t,i) ◦πσ(t,i))(t,i)∈T×I is the corresponding mapping

to A in Res(LI). The inverse of ϕA, i.e. the corresponding mapping to the matrix

B, is the mapping ϕB = ϕ−1A = (ϕ−1t,i ◦ πσ−1(t,i))(t,i)∈T×I . It follows that bi,j is of the

form bi,j = (ϕ̌i,j,t)t∈T with ϕ̌i,j,t as given in the proposition.

Example 4.18. Consider the invertible matrix M with the representation
0 0 b11 0

0 a22 0 0

c11 0 0 0

0 0 0 d22


from Example 4.12. Then the inverse matrix has the representation

0 0 c−111 0

0 a−122 0 0

b−111 0 0 0

0 0 0 d−122

 .

Invertible matrices over subsemirings of (Res(L),∨, ◦)

Lemma 4.19. Let L be a finite lattice, (R,∨, ◦) a subsemiring of (Res(L),∨, ◦),
and ϕ ∈ R such that ϕ is invertible in (Res(L), ◦). Then ϕ−1 ∈ R.
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Proof. Since ϕ is invertible and L is finite, we find that ϕ−1 ∈ 〈ϕ〉 ⊆ R, where 〈ϕ〉
is the span of ϕ with respect to ◦.

If (R,∨, ◦) is a subsemiring of (Res(L),∨, ◦), then (MatI×I(R),+, ·) is also a

subsemiring of (MatI×I(Res(L)),+, ·). The next corollary states the corresponding

result.

Corollary 4.20. Let L be a finite lattice, (R,∨, ◦) a subsemiring of (Res(L),∨, ◦),
I a finite index set, and A ∈ MatI×I(R) such that A is invertible in MatI×I(Res(L)).

Then A−1 ∈ MatI×I(R).

This means that for matrices over a subsemiring of (Res(L),∨, ◦), one can also

apply Corollary 4.11 to decide whether a matrix is invertible and Proposition 4.17

to construct the inverse of an invertible matrix. Consequently, one can do this for

every finite additively idempotent semiring with zero and one by Proposition 4.1.

In particular, these results apply to every proper finite simple semiring with zero by

Theorem 1.11.

4.4 Remarks

In the following let (R,+, ·) be a finite additively idempotent semiring with zero

and one. To apply Corollary 4.11 and Proposition 4.17 for matrices over R, it is

necessary to represent the semiring as a semiring of residuated mappings of a finite

lattice L. Additionally, it is required to know the representation of the lattice as

a direct product L = ×t∈T Lt of irreducible lattices Lt and to represent every

residuated mapping (semiring element) as a mapping of ×t∈T Lt. For example,

one can represent (R,+, ·) as the subsemiring (T (R),∨, ◦) of (Res(R),∨, ◦), where

R = (R,≤) (see Proposition 4.1). Also in this case one has to represent R as a

direct product R = ×t∈T Rt of irreducible lattices Rt, and one has to represent

every mapping in T (R) as a mapping of×t∈T Rt.

If the lattice L is irreducible, then we know by Corollary 4.13 that a matrix

is invertible iff it is a generalised permutation matrix, so in this case determining

whether a matrix is invertible as well as inverting is very easy. In particular, if the

lattice R is irreducible, then a matrix is invertible iff it is a generalised permuta-

tion matrix. Furthermore, the lattice R is irreducible iff the semigroup (R,+) is

irreducible. Hence, we get the following corollary.

Corollary 4.21. Let (R,+) be irreducible and A ∈ MatI×I(R). Then A is invertible

iff A is a generalised permutation matrix.

64



4.4. Remarks

Consequences on cryptosystems

The ability to determine whether a matrix is invertible or not and to compute the

inverse of an invertible matrix does not seem to have immediate consequences on

Protocol 1.20 due to the two-sided semigroup action. However, it would have an

effect on a similar protocol using only a one-sided semigroup action. Consider the

following protocol:

Protocol 4.22. (Diffie-Hellman with one-sided matrix semiring action)

• Alice and Bob publicly agree on a finite semiring (R,+, ·) with zero and choose

a positive integer n and matrices M,S ∈ Matn×n(R).

• Alice chooses a polynomial pa ∈ C[x] and computes A = pa(M) ·S. She sends

A to Bob and keeps pa secret.

• Bob chooses polynomial pb ∈ C[x] and computes B = pb(M) · S. He sends B

to Alice and keeps pb secret.

• Their common secret key is

k = pa(M) ·B = pb(M) ·A = pa(M) · pb(M) · S .

If the matrix S in this protocol would be invertible, one could easily solve the

corresponding semigroup action problem. More precisely, given the matrices A and

S (or B and S), one can compute pa(M) = A · S−1 (or pb(M) = B · S−1). On the

other hand, since it is possible to determine whether a matrix is invertible or not, it

is also possible to avoid an invertible matrix S in the set-up phase of the protocol.
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Chapter 5

Finite simple additively

idempotent semirings

There have been several studies on simple semirings, e.g. in [2, 3, 31, 32, 44, 45,

61]. Amongst other things a complete classification of finite commutative simple

semirings was presented in [2]. But there exists so far no classification of all finite

simple semirings. Monico showed in [45] that every proper finite simple semiring with

more than two elements and nontrivial addition is additively idempotent. Thereupon

additively idempotent semirings have been studied in [31, 32, 61]. In this chapter

we aim to describe all finite simple additively idempotent semirings. We did not

succeed to characterise all these semirings, but our approach covers many cases.

This work was done in collaboration with Jens Zumbrägel [36].

Besides the natural interest in simple objects, there is also a motivation to pro-

ceed on the classification of finite simple semirings in the context of this dissertation.

As shown in Section 1.4.1, semigroup actions involving commutative matrix semi-

rings have been proposed in [42]. These constructions use semirings with zero only,

but this is not a necessary requirement. Let (R,+, ·) be a semiring with nonempty

centre C. Then we define

C := {(ci)i∈I | I ⊆ N>0 is finite, ∀i ∈ I : ci ∈ C} .

For a positive integer n, a matrix M ∈ Matn×n(R), and c = (ci)i∈I ∈ C, we define

c(M) :=
∑
i∈I

ciM
i .
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Furthermore, let C[M ] := {c(M) | c ∈ C}. Then it is easy to see that (C[M ],+, ·) is

a commutative subsemiring of (Matn×n(R),+, ·). Therefore, also semirings without

zero can be used in Protocol 1.20.

To present the main result from [45], we need the following theorem about simple

semigroups, which can be found in [30, Theorem 3.7.1].

Theorem 5.1. Let I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}, and P an n ×m matrix

with pi,j ∈ {0, 1} for all i, j such that no row or column is identically zero, no two

rows are identical, and no two columns are identical. Let S = (I × J) ∪ {∞} and

define a binary operation on S by

(i, j) · (k, l) :=

(i, l) if pj,k = 1 ,

∞ else ,
(i, j) · ∞ :=∞ · (i, j) :=∞ ·∞ :=∞ .

Then (S, ·) is a simple semigroup of order mn + 1. Conversely, every finite simple

semigroup with an absorbing element is isomorphic to one of this kind.

The main result in [45] is the following:

Theorem 5.2. Let (R,+, ·) be a finite simple semiring. Then one of the following

holds:

1. |R| ≤ 2.

2. (R,+, ·) ∼= (Matn(Fq),+, ·) for some finite field Fq and some n ≥ 1.

3. (R,+, ·) is a zero multiplication ring of prime order.

4. (R, ·) is a semigroup as in Theorem 5.1 with absorbing element ∞ ∈ R and

R+R = {∞}.

5. (R,+) is idempotent.

Of course every semiring in the first four cases is simple, but not every additively

idempotent semiring is simple. Hence, if one wants to classify all finite simple semi-

rings, then it remains to describe all finite simple additively idempotent semirings.

The case, where such a semiring has a zero, was already described by Theorem 1.11.

We use here the same approach as in [61], i.e. we try to characterise every

finite simple additively idempotent semiring as a semiring of join-morphisms of a

semilattice. For this we have to distinguish between several cases, as we explain

now. We call an element r in a semiring (R,+, ·) right (left) absorbing if it is
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multiplicatively right (left) absorbing, i.e. sr = r (rs = r) holds for every s ∈ R.

If r is left and right absorbing, then it is called absorbing. Whenever (R,+, ·) is

additively idempotent, we consider the order ≤ on R defined by x ≤ y :⇔ x+ y = y

for x, y ∈ R. Then (R,≤) is a join-semilattice with sup{x, y} = x + y for all

x, y ∈ R. If R is moreover finite, then by the greatest element of (R,+, ·) we

mean the greatest element of (R,≤), which is
∑

r∈R r. We consider the cases where

the greatest element of a finite simple additively idempotent semiring is

1. neither right nor left absorbing,

2. right but not left absorbing,

3. left but not right absorbing,

4. absorbing and the semiring possesses a finite idempotent irreducible semimod-

ule (see Section 5.1 for definitions), whose greatest element is

(a) join-irreducible,

(b) join-reducible.

We succeed with this approach for every case, except Case 4b, for which we have a

conjecture.

As we will see in Section 5.6, semirings in Case 4b have no additively neutral ele-

ment. For this reason, we complete the classification of finite simple semirings with

an additively neutral element by our characterisation theorems. This classification

is summarised in Theorem 5.63.

The chapter is structured as follows. Section 5.1 contains a comprehensive study

of semimodules, especially idempotent irreducible semimodules. These semimodules

are necessary to describe the embedding of a finite simple additively idempotent

semiring into the semiring of join-morphisms of a semilattice, which is done in

Section 5.2. In Section 5.3, we study simple subsemirings of a semiring of join-

morphisms of a semilattice. The main results are stated in Section 5.4, which are

the characterisation theorems that characterise a finite simple additively idempotent

semiring as a semiring of join-morphisms of a semilattice. Section 5.5 clarifies that

if two semirings considered in the main results are isomorphic, then also the corres-

ponding semilattices have to be isomorphic. The question when a semiring has an

additively or multiplicatively neutral element is answered in Section 5.6, where we

also state the complete classification of finite simple semirings with an additively

neutral element. In Section 5.7, we discuss the remaining Case 4b.
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5.1 Semimodules

In the following let (R,+, ·) be a semiring.

Definition 5.3. A semimodule over (R,+, ·) (or just R-semimodule) is a com-

mutative semigroup (M,+) together with an R-multiplication

R×M →M , (r, x) 7→ rx ,

such that

r(sx) = (rs)x , (r + s)x = rx+ sx , and r(x+ y) = rx+ ry

for all r, s ∈ R and x, y ∈M .

For an R-semimodule (M,+), we define RN := {rn | r ∈ R, n ∈ N} for every

subset N of M and Ra := {ra | r ∈ R} for every a ∈M .

An R-semimodule (M,+) can be understood as the algebra (M,F ∪{+}), where

F := {Tr : M →M, x 7→ rx | r ∈ R} .

By an R-subsemimodule of (M,+) we mean a subalgebra of this algebra, i.e. a sub-

semigroup (N,+) of (M,+) with RN ⊆ N . Clearly, (Ra,+) is an R-subsemimodule

of (M,+), for a ∈ M . By a (semimodule) congruence on (M,+) we mean a

congruence on (M,F ∪ {+}), i.e. an equivalence relation ∼ on M satisfying

a ∼ b and c ∼ d ⇒ a+ c ∼ b+ d and ra ∼ rb

for all a, b, c, d ∈M and r ∈ R. One can easily see that this is equivalent to

a ∼ b ⇒ a+ c ∼ b+ c and ra ∼ rb

for all a, b, c ∈ M and r ∈ R. If ∼ is a semimodule congruence on (M,+), then

(M/∼ ,+) with [x] + [y] := [x+ y] and r[x] := [rx] is again an R-semimodule, called

quotient semimodule.

If (M,+) is an R-semimodule, then we mean by End(M,+) the set of all semi-

group endomorphisms of the semigroup (M,+).
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Definition 5.4. An R-semimodule (M,+) is called faithful if the semiring homo-

morphism

T : R→ End(M,+) , r 7→ Tr with Tr : x 7→ rx ,

is injective, and (M,+) is called constant if T is constant. Moreover, (M,+) is said

to be faithful of smallest cardinality if (M,+) is faithful and any R-semimodule

(N,+) with cardinality |N | < |M | is not faithful.

If (M,+) is a finite faithful R-semimodule of smallest cardinality, then in partic-

ular all proper subsemimodules and quotient semimodules of (M,+) are not faithful.

When the semiring (R,+, ·) is simple, this furthermore implies that all proper sub-

semimodules and quotient semimodules of (M,+) are constant.

Definition 5.5. Let (M,+) be an R-semimodule. Then (M,+) is called an

R-identity-semimodule if rx = x holds for all r ∈ R and x ∈ M . Other-

wise, (M,+) is called an R-nonidentity-semimodule. For an R-subsemimodule

(N,+) of (M,+), we also say R-identity-subsemimodule and R-nonidentity-

subsemimodule.

By this definition, it follows trivially that an R-semimodule (M,+) with |M | = 1

is an R-identity-semimodule. R-identity-semimodules are clearly constant.

Definition 5.6. Let (M,+) be an R-nonidentity-semimodule with |RM | > 1. We

call (M,+) sub-irreducible if it has no proper R-nonidentity-subsemimodules, and

we call (M,+) quotient-irreducible if its only semimodule congruences are idM

and M ×M . The semimodule (M,+) is called irreducible if it is both sub- and

quotient-irreducible.

At this point we want to state a conjecture.

Conjecture 5.7. Let (R,+, ·) be finite, simple, and additively idempotent and let

(M,+) be a finite idempotent R-semimodule. Then (M,+) is sub-irreducible iff it is

quotient-irreducible.

Evidence for this conjecture is given by the fact that all semimodules considered

in experiments satisfy this equivalence.

Let (M,+) be an R-semimodule and a, b ∈ M . It is easy to see that Ra = {b}
implies Rb = {b}. We show that some additional conditions even imply a = b.

Lemma 5.8. Let (M,+) be an idempotent sub-irreducible R-semimodule, and let

a, b ∈M such that Ra = {b}. Then a = b.
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Proof. Consider the set N := {m ∈ M | Rm = {b}}, which contains the element a.

We show that (N,+) is an R-subsemimodule of (M,+). Let m,n ∈ N and let s ∈ R.

For every r ∈ R, we have r(m+ n) = rm+ rn = b+ b = b and r(sm) = (rs)m = b.

Hence, m+ n ∈ N and sm ∈ N . So the claim follows.

Since |RM | > 1, we have N 6= M , and by the sub-irreducibility of (M,+), it

follows that (N,+) is an R-identity-subsemimodule of (M,+). In particular, for

a ∈ N we have Ra = {a}, which implies a = b.

Lemma 5.9. Let (M,+) be an idempotent sub-irreducible R-semimodule. Then

(M,+) is not constant. In particular, if (R,+, ·) is simple, then (M,+) is faithful

and (R,+, ·) is isomorphic to the subsemiring (T (R),+, ◦) of (End(M,+),+, ◦).

Proof. Suppose that (M,+) is constant. Then for all x ∈ M , we have rx = sx

for all r, s ∈ R, i.e. |Rx| = 1. By Lemma 5.8, Rx = {x} follows. Hence, M is an

R-identity-semimodule, which contradicts a requirement for sub-irreducibility.

If (R,+, ·) is simple, then (R,+, ·) is clearly isomorphic to (T (R),+, ◦).

Whenever (M,+) is an idempotent semimodule, we consider the order ≤ on M

defined by x ≤ y :⇔ x + y = y for x, y ∈ M . Then (M,≤) is a join-semilattice

with sup{x, y} = x + y for all x, y ∈ M . If M is moreover finite, then we mean

by the greatest element of (M,+) the greatest element of (M,≤). To avoid

confusion with multiplicatively neutral elements, we denote the greatest element

of a semilattice (S,+) that is a finite idempotent semimodule or the idempotent

additive semigroup of a finite semiring by∞S or just by∞ if the semilattice is clear

from the context.

The following two corollaries are consequences of Lemma 5.9.

Corollary 5.10. Let (M,+) be a finite idempotent sub-irreducible R-semimodule

with neutral element 0M , let (R,+, ·) be simple, and let r ∈ R. If rx = 0M for every

x ∈ M , then r is a neutral element in (R,+). If R∞M = {∞M} and rx = 0M for

every x ∈M \ {∞M}, then r is a neutral element in (R,+).

Corollary 5.11. Let (M,+) be an idempotent sub-irreducible R-semimodule, let

(R,+, ·) be simple, and let r ∈ R. If (rs)x = rx (resp. (sr)x = rx) for every s ∈ R
and x ∈M , then r is left (resp. right) absorbing.

5.1.1 Existence of idempotent irreducible semimodules

Let (R,+, ·) be in this section a finite simple semiring. The main result of this section

is Proposition 5.21, which states that (R,+, ·) admits a finite idempotent irreducible
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semimodule if (R,+, ·) is additively idempotent and fulfils |R| > 2. This will be done

by showing the existence of an idempotent faithful R-semimodule (and therefore the

existence of an idempotent faithful R-semimodule of smallest cardinality) and by

showing that faithful R-semimodules of smallest cardinality are irreducible.

The following result is [45, Lemma 6].

Lemma 5.12. If the multiplication table of (R,+, ·) has two identical rows or two

identical columns, then |RR| = 1 or |R| = 2.

Lemma 5.13. Let (M,+) be an idempotent sub-irreducible R-semimodule, let

|R| > 2, and |RR| > 1. Then there exists an a ∈M with Ra = M .

Proof. Assume that (Ra,+) is for every a ∈ M an R-identity-semimodule, i.e. for

all r, s ∈ R and every a ∈ M , we have (rs)a = r(sa) = sa. By Corollary 5.11,

it follows that s is right absorbing for every s ∈ R. Hence, any two rows in the

multiplication table are identical and by Lemma 5.12, |RR| = 1 or |R| = 2 fol-

lows. This is a contradiction and it follows that there exists an a ∈ M such that

(Ra,+) is an R-nonidentity-semimodule. By the sub-irreducibility of (M,+), it

follows that Ra = M .

Lemma 5.14. Let (M,+) be an R-semimodule and a ∈ M such that (Ra,+) is a

constant R-semimodule. Then the relation ∼a on R, defined by

r ∼a s :⇔ ra = sa

for all r, s ∈ R, is a congruence on (R,+, ·).

Proof. Let r, s, t ∈ R with r ∼a s. It holds that (r+t)a = ra+ta = sa+ta = (s+t)a,

i.e. r + t ∼a s + t. We also find that (tr)a = t(ra) = t(sa) = (ts)a, i.e. tr ∼a ts.
Since (Ra,+) is constant, it follows that u(wa) = v(wa) for all u, v, w ∈ R. Hence,

we have (rt)a = r(ta) = s(ta) = (st)a, i.e. rt ∼a st. Thus, ∼a is a congruence.

Lemma 5.15. Let |RR| > 1 and |R| > 2. Then (R,+) is a faithful R-semimodule.

Proof. (R,+) is clearly an R-semimodule. Assume that (R,+) is not faithful. Then

sr = tr holds for all r, s, t ∈ R. Thus, any two rows in the multiplication table of

(R,+, ·) are identical and that is a contradiction to Lemma 5.12.

Lemma 5.16. Let |RR| > 1, |R| > 2, and let (M,+) be a faithful R-semimodule of

smallest cardinality. Then there exists an a ∈M with Ra = M .
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Proof. Let a ∈ M with Ra ( M . Then (Ra,+) is not faithful and by simplicity

of (R,+, ·) it has to be constant. By Lemma 5.14, ∼a is a congruence on (R,+, ·).
Consequently, ∼a = idR or ∼a = R × R. If ∼a = idR, then ra = sa ⇔ r = s for

all r, s ∈ R. Hence, |Ra| = |R|. But by Lemma 5.15 we have |Ra| < |M | ≤ |R|, a

contradiction. Therefore, ∼a = R×R, so that ra = sa for all r, s ∈ R, i.e. |Ra| = 1.

Now assume that Ra ( M for every a ∈ M . Hence, for every a ∈ M we have

|Ra| = 1, i.e. Ra = {ba} for some ba ∈ M . It follows that (rs)a = ba = sa for all

r, s ∈ R and a ∈ M . Since (M,+) is faithful, this implies that s is right absorbing

for every s ∈ R. Consequently, any two rows in the multiplication table of (R,+, ·)
are identical, in contradiction to Lemma 5.12. Thus, there must exist an a ∈ M

with Ra = M .

Lemma 5.17. Let |RR| > 1, |R| > 2, and let (M,+) be a faithful R-semimodule of

smallest cardinality. Then (M,+) is quotient-irreducible.

Proof. Let ∼ be a semimodule congruence on (M,+) distinct from idM and let

N := M/∼. Consequently, (N,+) is not faithful and [rm] = r[m] = s[m] = [sm]

must hold for all r, s ∈ R and m ∈ M . By Lemma 5.16, there exists an a ∈ M

with Ra = M . Choose b, c ∈M arbitrarily. There exist rb, rc ∈ R with rba = b and

rca = c. It follows that [b] = [rba] = [rca] = [c], i.e. b ∼ c. Hence, ∼= M ×M and

the statement follows.

Proposition 5.18. Let |RR| > 1, |R| > 2, and let (M,+) be a faithful R-

semimodule of smallest cardinality. Then (M,+) is irreducible.

Proof. Since (M,+) is faithful, it must be an R-nonidentity-semimodule and it must

fulfil |RM | > 1. Let (N,+) be a proper R-subsemimodule of (M,+). (N,+) has

to be non-faithful and it follows that rn = sn for all r, s ∈ R and n ∈ N . Thus,

|Rn| = 1 for every n ∈ N . Define the equivalence relation ∼ on M by

m ∼ n :⇔ ∀r ∈ R : rm = rn

for all m,n ∈ M . Let a, b, c ∈ M with a ∼ b and let r, s ∈ R. We have r(a + c) =

ra+rc = rb+rc = r(b+c), i.e. a+c ∼ b+c. We also find that r(sa) = (rs)a = (rs)b =

r(sb), i.e. sa ∼ sb. Thus, ∼ is a semimodule congruence on (M,+). Lemma 5.17

implies that ∼ = M ×M or ∼ = idM . Assume ∼ = M ×M . Then rm = rn holds

for all m,n ∈ M and r ∈ R. So, Rm = Rn for all m,n ∈ M . By Lemma 5.16,

there exists an a ∈M with Ra = M . Then M = Ra = Rn for every n ∈M , and in

particular |M | = |Rn| = 1 when choosing n ∈ N ; this is a contradiction.
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It must hold that ∼ = idM . For every n ∈ N , there is f(n) ∈ N such that

Rn = {f(n)}. Hence, if f(n1) = f(n2) for some n1, n2 ∈ N , then rn1 = rn2 for

all r ∈ R, so that n1 ∼ n2 and thus n1 = n2. Now for any n ∈ N and r, s ∈ R

the equality f(f(n)) = r(f(n)) = r(sn) = (rs)n = f(n) holds, so that f(n) = n

follows. Thus, for every n ∈ N we have Rn = {n}, which means that (N,+) is

an R-identity-semimodule. We have proven that (M,+) is sub-irreducible. With

Lemma 5.17, it is irreducible.

For an ordered set (P,≤) and an element x ∈ P , we denote x↓ := {y ∈ P | y ≤ x}
and x↑ := {y ∈ P | y ≥ x}.

Lemma 5.19. Let (R,+, ·) be additively idempotent and |R| > 2. Then |RR| > 1.

Proof. Let x ∈ R \ {∞} and let ∼ be the equivalence relation on R with the equi-

valence classes x↓ and R\x↓. It is easy to check that ∼ is a nontrivial congruence of

the semigroup (R,+). If |RR| = 1 would hold, then every equivalence relation on R

would be a congruence of (R, ·). Consequently, ∼ would be a nontrivial congruence

of (R,+, ·) and that would be a contradiction to (R,+, ·) being simple.

In the following we will consider semirings that fulfil |R| > 2 and |RR| > 1. When

we consider additively idempotent semirings, then we do not have to mention any-

more the condition |RR| > 1 because of the last lemma.

Lemma 5.20. Let (R,+, ·) be additively idempotent, |R| > 2, and let (M,+) be a

faithful R-semimodule of smallest cardinality. Then (M,+) is idempotent.

Proof. Proposition 5.16 yields the existence of an element a ∈M with Ra = M . Let

b ∈M . Then there exists an r ∈ R with ra = b and it follows that b+ b = ra+ ra =

(r + r)a = ra = b. Thus, (M,+) is idempotent.

Proposition 5.21. Let (R,+, ·) be additively idempotent and let |R| > 2. Then

there exists a finite idempotent irreducible R-semimodule.

Proof. By Lemma 5.15, there exists a faithful R-semimodule and therefore also a

faithful R-semimodule (M,+) of smallest cardinality, which is by Proposition 5.18

irreducible. By Lemma 5.20, it is idempotent.
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5.1.2 Properties of idempotent sub-irreducible semimodules

Throughout this section let (R,+, ·) be a finite simple additively idempotent semiring

with |R| > 2 and let (M,+) be a finite idempotent sub-irreducible R-semimodule.

We will study the properties of the R-semimodule (M,+), depending on the prop-

erties of (R,+, ·) (∞R is absorbing, 0M exists and is left absorbing etc.). These

properties are needed to describe the embedding of (R,+, ·) into (JM(L),∨, ◦) for a

suitable semilattice L, what will be done in Section 5.2.

Lemma 5.22. Let (N,+) be an idempotent R-semimodule. Then for all x, y ∈ N
and r, s ∈ R:

1. x ≤ y implies rx ≤ ry.

2. r ≤ s implies rx ≤ sx.

Proof. 1. x ≤ y ⇔ x+ y = y ⇒ rx+ ry = r(x+ y) = ry ⇔ rx ≤ ry.

2. r ≤ s⇔ r + s = s ⇒ sx = (r + s)x = rx+ sx⇔ rx ≤ sx.

The order compatibilities stated in Lemma 5.22 are quite essential for us. In the

following we will use them frequently, without referring to this lemma explicitly.

Lemma 5.23. Let a, b ∈ M such that Ra = {b}. Then a = b, and a is either an

absorbing or a neutral element of (M,+).

Proof. We have a = b from Lemma 5.8. Consider the sets a↓ and a↑, which form

R-subsemimodules (a↓,+) and (a↑,+) of (M,+). We have to show that either

a↓ = M , in which case a is an absorbing element, or a↑ = M , in which case a is a

neutral element.

Suppose then that a↓ 6= M and a↑ 6= M . Consider N := a↓ ∪ a↑, which forms

an R-subsemimodule (N,+) of (M,+). Since (M,+) is sub-irreducible we have that

(a↓,+) and (a↑,+) are R-identity-semimodules, and hence N is also an R-identity-

semimodule.

Now we claim that (M \ a↓,+) is an R-subsemimodule of (M,+) as well. Let

x, y ∈M , x, y /∈ a↓ and let r ∈ R; then clearly x+y /∈ a↓. Suppose that rx ∈ a↓, i.e.

rx ≤ a. Then x+ a = r(x+ a) = rx+ ra = rx+ a = a, so that x ≤ a, contradicting

x /∈ a↓. Hence, (M \ a↓,+) is an R-subsemimodule of (M,+), which is proper, and

thus an R-identity-subsemimodule. From this and because of M = a↓ ∪ (M \ a↓) it

follows that (M,+) is an R-identity-semimodule, which contradicts a requirement

for sub-irreducibility.
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Corollary 5.24. Let (N,+) be an R-identity-subsemimodule of (M,+). If (M,+)

has no neutral element, then N = {∞}. If (M,+) has a neutral element 0,

then N ⊆ {0,∞}.

Proposition 5.25. If (M,+) has no neutral element, then Ra = M for

every a ∈M \ {∞}. If (M,+) has a neutral element 0, then Ra = M for

every a ∈M \ {0,∞}.

Proof. First consider the case that (M,+) has no neutral element and let

a ∈M \ {∞}. Assume that (Ra,+) is an R-identity-semimodule. By Corollary 5.24,

Ra = {∞} holds, and by Lemma 5.23, we have a = ∞, what is a contradiction.

Hence, (Ra,+) is an R-nonidentity-semimodule, and by the sub-irreducibility of

(M,+), it follows that Ra = M .

Now let (M,+) have a neutral element 0 and let a ∈M \{0,∞}. Assume that the

R-semimodule (Ra,+) is an R-identity-semimodule. It cannot hold that |Ra| = 1,

otherwise we would have a = 0 or a = ∞ by Lemma 5.23. By Corollary 5.24,

Ra = {0,∞} follows. Thus, the congruence ∼a on (R,+, ·) (see Lemma 5.14)

has two nonempty equivalence classes and is therefore a nontrivial congruence on

(R,+, ·). But that is a contradiction to (R,+, ·) being simple. Consequently, (Ra,+)

is not an R-identity-semimodule and by the sub-irreducibility of (M,+) it follows

that Ra = M .

Proposition 5.26. The following statements hold:

1. If (M,+) has no neutral element, then ∞Rx =∞M for every x ∈M .

2. If (M,+) has a neutral element 0M , then∞Rx =∞M for every x ∈M \{0M}.

3. If ∞R is not left absorbing, then (M,+) has a neutral element 0M and it

satisfies R0M = {0M}.

4. If ∞R is right absorbing, then R∞M = {∞M}.

Proof. 1.: By Proposition 5.25, there exists for every x ∈M \{∞M} an rx ∈ R with

rxx =∞M . By rxx ≤ ∞Rx ≤ ∞R∞M , the statement follows.

2.: If |M | = 2, i.e.M = {0M ,∞M}, then there exists an a ∈M and an r ∈ R with

ra =∞M by Lemma 5.13. It follows that ra ≤ ∞Ra ≤ ∞R∞M , i.e.∞R∞M =∞M .

If |M | > 2, then the statement follows analogously as in 1.

3.: Assume that (M,+) has no neutral element. By 1. we get (∞Rr)x =

∞R(rx) = ∞M = ∞Rx for every r ∈ R and x ∈ M , i.e. ∞R is left absorbing
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by Corollary 5.11, which contradicts the precondition. Hence, (M,+) has a neutral

element 0M . Now assume that ∞M ∈ R0M holds. Then there exists an r0 ∈ R

with r00M = ∞M . With r00M ≤ ∞R0M ≤ ∞Rx we find ∞Rx = ∞M for every

x ∈M . Analogously, the same contradiction as in the previous assumption follows.

Thus, ∞M /∈ R0M and the proper R-subsemimodule (R0M ,+) of (M,+) must fulfil

R0M = {0M} by Corollary 5.24.

4.: By Lemma 5.13, there exists an x ∈ M and an r ∈ R with rx = ∞M and

it follows that ∞R∞M = ∞M by rx ≤ r∞M ≤ ∞R∞M . If ∞R is right absorbing,

then r∞M = r(∞R∞M ) = (r∞R)∞M =∞R∞M =∞M for every r ∈ R.

Proposition 5.27. Let (R,+) have a neutral element 0R. Then (M,+) has a

neutral element.

Proof. By Lemma 5.13, there exists an x ∈ M with Rx = M . Thus, for every

y ∈M there exists an ry ∈ R with ryx = y. It follows that 0Rx ≤ ryx = y for every

y ∈ M . Hence, 0Rx is a least element in (M,≤) and therefore a neutral element

in (M,+).

In the following we denote by 0M the neutral element of (M,+).

Lemma 5.28. Let (R,+) have a neutral element 0R. Then:

1. 0Rx = 0M for every x ∈M \ {∞M}.

2. If 0R is left absorbing, then 0R∞M = 0M .

3. If 0R is not left absorbing, then R∞M = {∞M} (in particular 0R∞M =∞M ).

4. If 0R is not right absorbing, then R0M = M .

Proof. 1.: If |M | = 2, i.e. M \ {∞M} = {0M}, then there exists an r ∈ R and an

x ∈ M with rx = 0M by Lemma 5.13. It follows that 0R0M ≤ 0Rx ≤ rx = 0M . If

|M | > 2, then there exists for every x ∈M \ {0M ,∞M} an r ∈ R with rx = 0M by

Proposition 5.25. It follows that 0R0M ≤ 0Rx ≤ rx = 0M , i.e. 0Rx = 0M for every

x ∈M \ {∞M}.
2.: By Lemma 5.13, there exists an a ∈ M with Ra = M . If a = ∞M , then

there exists an r ∈ R with r∞M = 0M and it follows that 0R∞M ≤ r∞M = 0M .

If a 6= ∞M , then there exists an s ∈ R with sa = ∞M . By 1. it follows that

0R∞M = 0R(sa) = (0Rs)a = 0Ra = 0M .

3.: Now let 0R be not left absorbing and assume that 0R∞M = 0M holds. For

every r ∈ R and every y ∈ M we find (0Rr)y = 0R(ry) = 0M = 0Ry. This means
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0R is left absorbing by Corollary 5.11, which is a contradiction. Now assume that

0R∞M 6=∞M holds. By 1. we have 0M = 0R(0R∞M ) = (0R0R)∞M ≥ 0R∞M . This

means 0R∞M = 0M , which is again a contradiction. We conclude that 0R∞M =

∞M must hold. With 0R∞M ≤ r∞M we find that r∞M =∞M for every r ∈ R.

4.: Now let 0R be not right absorbing and assume that (R0M ,+) is an R-identity-

semimodule. By 0R0M = 0M and Corollary 5.24, we know that 0M ∈ R0M ⊆
{0M ,∞M} holds. If R0M = {0M ,∞M} would hold, then ∼0M (see Lemma 5.14)

would be a nontrivial congruence on (R,+, ·). Hence, R0M = {0M}. If 0R is left

absorbing, then (r0R)x = r(0Rx) = r0M = 0M = 0Rx follows for every r ∈ R and

x ∈ M because of 0Rx = 0M for every x ∈ M . If 0R is not left absorbing, then we

also have

(r0R)x = r(0Rx) =

r0M = 0M = 0Rx if x 6=∞M ,

r∞M =∞M = 0Rx else

for every r ∈ R and x ∈ M . By Corollary 5.11, 0R is right absorbing and that is

a contradiction. Consequently, (R0M ,+) cannot be an R-identity-semimodule. By

the sub-irreducibility of (M,+), we find R0M = M .

Lemma 5.29. Let (R,+) have no neutral element. Then:

1. If (M,+) has a neutral element 0M , then R∞M = {∞M}.

2. If ∞R is not right absorbing, then (M,+) has no neutral element.

Proof. 1.: Assume there exists an r ∈ R with r∞M = 0M . Because of rx ≤ r∞M ,

we have rx = 0M for every x ∈ M . By Corollary 5.10, r is a neutral element in

(R,+) and that contradicts the precondition. Hence, 0M /∈ R∞M . By the sub-

irreducibility of (M,+) and Corollary 5.24, it follows that R∞M = {∞M}.
2.: Assume that (M,+) has a neutral element 0M . By Proposition 5.26 and 1.

the equality (r∞R)x = r(∞Rx) = r∞M = ∞M = ∞Rx holds for every r ∈ R and

x ∈M \ {0M}. Since ∞R is not right absorbing, there must exist an r0 ∈ R with

(r0∞R)0M 6= ∞R0M by Corollary 5.11. Hence, it clearly must hold that ∞R0M 6=
∞M and it follows that r0M ≤ ∞R0M <∞M for every r ∈ R, i.e. ∞M /∈ R0M . By

the sub-irreducibility of (M,+) and Corollary 5.24, it follows that R0M = {0M}.
This yields a contradiction by (r0∞R)0M = r0(∞R0M ) = r00M = 0M = ∞R0M .

Thus, (M,+) has no neutral element.
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Proposition 5.30. Let ∞R be neither left nor right absorbing. Then (R,+, ·) has

a zero.

Proof. Since ∞R is not left absorbing, (M,+) has a neutral element 0M and

R0M = {0M} holds by Proposition 5.26. It also follows by Proposition 5.26 that

∞Rx =∞M for every x ∈M \{0M}. If (R,+) would have no neutral element, then

Lemma 5.29 would imply that (M,+) has no neutral element, which would be a

contradiction. Hence, (R,+) has a neutral element 0R. This neutral element has

to be right absorbing, otherwise Lemma 5.28 implies that R0M = M , which would

be a contradiction. Assume that 0R is not left absorbing. Then R∞M = {∞M} by

Lemma 5.28. Let r ∈ R and x ∈M . It follows that

(r∞R)x = r(∞Rx) =

r0M = 0M =∞Rx if x = 0M ,

r∞M =∞M =∞Rx if x 6= 0M .

By Corollary 5.11, ∞R is right absorbing and that is a contradiction. Hence, 0R is

left and right absorbing and therefore a zero.

5.1.3 Density results for idempotent irreducible semimodules

Let again (R,+, ·) be a finite simple additively idempotent semiring with |R| > 2,

and let now (M,+) be a finite idempotent irreducible R-semimodule. The following

two propositions are density results akin to [61, Proposition 3.13].

Let a, b ∈M . If there exists an element r ∈ R, with

rx =

b if x ≤ a ,

∞M else ,

then it is unique since (M,+) is faithful, and we denote it by ra,b.

Proposition 5.31. Let ∞R be not left absorbing. Then ra,0M ∈ R for every

a ∈M \ {∞M}.

Proof. By Proposition 5.26, (M,+) has a neutral element 0M , which satisfies

R0M = {0M}. Define Ix := {r ∈ R | rx = 0M} for every x ∈ M and the equi-

valence relation ∼ on M by x ∼ y :⇔ Ix = Iy for x, y ∈ M . For every r ∈ R and

x, y ∈M , the equivalence

r ∈ Ix+y ⇔ 0M = r(x+ y) = rx+ ry ⇔ 0M = rx = ry ⇔ r ∈ Ix ∩ Iy
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holds, i.e. Ix+y = Ix ∩ Iy. Now let x, y, z ∈M with x ∼ y and r, s ∈ R. We find that

Ix+z = Ix ∩ Iz = Iy ∩ Iz = Iy+z, i.e. x+ z ∼ y + z. Furthermore, the equivalence

s ∈ Irx ⇔ 0M = s(rx) = (sr)x ⇔ sr ∈ Ix = Iy ⇔ 0M = (sr)y = s(ry) ⇔ s ∈ Iry

holds, i.e. Irx = Iry. Hence, rx ∼ ry. Consequently, ∼ is a semimodule congruence

on (M,+). If ∼ = M ×M , then Ix = I0M = R would hold for every x ∈ M , i.e.

RM = {0M}. But this is a contradiction to the irreducibility of (M,+). Thus,

∼ = idM follows by quotient-irreducibility and we get the equivalence x ≤ y ⇔
Iy ⊆ Ix for all x, y ∈ M . One can easily show that (Ix,+) is an R-semimodule

for every x ∈ M . It follows that (Ixy,+) is an R-subsemimodule of (M,+) for all

x, y ∈ M . Fix an a ∈ M \ {∞M} and let b ∈ M with b � a. Hence, Ia * Ib and

therefore Ia \ Ib 6= ∅. If (Iab,+) is an R-identity-semimodule, then Iab ⊆ {0M ,∞M}
by Corollary 5.24. Hence, rb =∞M for every r ∈ Ia \ Ib. This means there exists an

rb ∈ Ia with rbb = ∞M . If (Iab,+) is an R-nonidentity-semimodule, i.e. Iab = M ,

then there also exists an rb ∈ Ia with rbb =∞M . Now define s :=
∑

b∈M,b�a rb ∈ R
and let x ∈M . If x ≤ a, then rbx ≤ rba = 0M for every b with b � a, i.e. sx = 0M .

If x � a, then sx =
∑

b∈M,b�a rbx ≥ rxx =∞M , i.e. sx =∞M . Thus, s = ra,0M .

For the proof of the following proposition we need the notion of minimal elements

in ordered sets: An element m in an ordered set (P,≤) is called minimal if there

exists no element n ∈ P with n < m. By Min(P,≤) we denote the set of minimal

elements in (P,≤).

Proposition 5.32. Let ∞M be join-irreducible and R∞M = {∞M}. If (M,+) has

a neutral element 0M , then ra,0M ∈ R for every a ∈ M \ {∞M}. If (M,+) has no

neutral element, then ra,b ∈ R for every a ∈M \ {∞M} and every b ∈M .

Proof. Define Kx := {r ∈ R | rx = ∞M} for every x ∈ M . It is easy to verify that

Kx is for every x ∈ M \ {0M} an R-semimodule. By the join-irreducibility of ∞M ,

we have

s ∈ Kx+y ⇔ ∞M = s(x+y) = sx+sy ⇔ sx =∞M or sy =∞M ⇔ s ∈ Kx∪Ky

for x, y ∈M and s ∈ R. Hence, Kx+y = Kx ∪Ky. Define the equivalence relation ∼
on M by x ∼ y :⇔ Kx = Ky for all x, y ∈ M . We will show that ∼ is a

semimodule congruence on (M,+). Let x, y, z ∈ M with x ∼ y and r, s ∈ R. We

find Kx+z = Kx ∪Kz = Ky ∪Kz = Ky+z, i.e. x+ z ∼ y + z. Furthermore, we have
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the equivalence

s ∈ Krx ⇔ ∞M = s(rx) = (sr)x ⇔ sr ∈ Kx = Ky

⇔ ∞M = (sr)y = s(ry) ⇔ s ∈ Kry ,

i.e. rx ∼ ry. Hence, ∼ is a semimodule congruence on (M,+). Assume ∼= M ×M .

Then Kx = K∞M = R for every x ∈M and it follows that RM = {∞M}. But this

is a contradiction to the irreducibility of (M,+). By the quotient-irreducibility of

(M,+), we get ∼ = idM . Because of Kx+y = Kx ∪ Ky, the equivalence x ≤ y ⇔
Kx ⊆ Ky follows for all x, y ∈ M . Let 0M be the possibly existing neutral element

of (M,+). It is easy to verify that (Kxy,+) is an R-subsemimodule of (M,+) for

all x, y ∈ M with x 6= 0M . Now fix an element a ∈ M \ {∞M} and let x ∈ M

with x � a. It follows that Kx * Ka and therefore Kx \ Ka 6= ∅. If (Kxa,+) is

an R-nonidentity-semimodule, then Kxa = M and it follows that there exists an

sx,b ∈ Kx with sx,ba = b for every b ∈M .

Consider the case that 0M exists, i.e. Min(M,≤) = {0M}. If (Kxa,+) is an

R-identity-semimodule, then Kxa ⊆ {0M ,∞M} by Corollary 5.24. Then clearly

ra = 0M for every r ∈ Kx \Ka, i.e. there exists an sx,0M ∈ Kx with sx,0Ma = 0M .

This means for every b ∈ Min(M,≤) = {0M} and every x ∈ M with x � a there

exists an sx,b ∈ Kx with sx,ba = b.

Now consider the case that (M,+) has no neutral element. If (Kxa,+) is an

R-identity-semimodule, then Kxa = {∞M} by Corollary 5.24, what yields the con-

tradiction Kx ⊆ Ka. Hence, (Kxa,+) cannot be an R-identity-semimodule. Again

we conclude that there exists an sx,b ∈ Kx with sx,ba = b for every b ∈ Min(M,≤)

and every x ∈M with x � a.

Now fix an element b ∈ Min(M,≤), define s :=
∑

x∈M,x�a sx,b and let z ∈M . If

z ≤ a, then sx,bz ≤ sx,ba = b for every x ∈M with x � a, i.e. sz = b. If z � a, then

sz,bz = ∞ because of sz,b ∈ Kz. It follows that sz =
∑

x∈M,x�a sx,bz ≥ sz,bz = ∞,

i.e. sz =∞. Thus, ra,b = s ∈ R. In particular, if (M,+) has a neutral element 0M ,

then b = 0M and therefore ra,0M ∈ R. Now consider again the case that (M,+) has

no neutral element and choose c ∈ M arbitrarily. Then by Proposition 5.25 there

exists a t ∈ R with tb = c and it follows that ra,c = ts ∈ R.
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5.2 Embedding of (R,+, ·) into (JM(L),∨, ◦)

In this section let (R,+, ·) be again a finite simple additively idempotent semiring

with |R| > 2. From now on, by a semilattice we will always mean a join-semilattice.

If L is a semilattice, then the algebra (JM(L),∨, ◦) is a semiring, where the addi-

tion ∨ is the pointwise supremum and the multiplication ◦ the composition of two

mappings. We are going to embed (R,+, ·) into the semiring (JM(L),∨, ◦) for a suit-

able finite semilattice L. The subsemiring (S,∨, ◦) of (JM(L),∨, ◦) corresponding

to (R,+, ·) fulfils then certain conditions, depending on the properties of (R,+, ·).
In the beginning of this section we list all conditions that may arise for (S,∨, ◦)
and that may be necessary for the characterisation of (R,+, ·). First, we need two

notations. For a, b ∈ L, let ka be the mapping from L to L that maps constantly to

a, and let fa,b be the mapping defined by

fa,b : L→ L , x 7→

b if x ≤ a ,

1L else .

The semiring (S,∨, ◦) may fulfil some of the following conditions:

∀a ∈ L \ {1} ∀b ∈ L : fa,b ∈ S , (5.1)

∀f ∈ S ∃a ∈ L \ {1} ∃b ∈ L : fa,b ≤ f , (5.2)

∀a ∈ L : ka ∈ S , (5.3)

∀f ∈ S ∃a ∈ L : ka ≤ f , (5.4)

∀a ∈ L ∀b ∈ L \ {1} ∃f ∈ S : f(x) = b if x ≤ a, and f(x) > b else. (5.5)

If L is a lattice, then (S,∨, ◦) may also fulfil:

∀a ∈ L \ {1} : fa,0 ∈ S , (5.6)

∀f ∈ S ∃a ∈ L \ {1} : fa,0 ≤ f , (5.7)

∀a ∈ L \ {0, 1} ∀b ∈ L ∃f ∈ S : f(a) = b . (5.8)

We also need the following notations. Let L be a finite semilattice and K a finite
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lattice. Then we denote:

JM1(L) := {f ∈ JM(L) | f(1) = 1} ,

Res1(K) := {f ∈ Res(K) | f(1) = 1} ,

Res0(K) := {f ∈ Res(K) | ∀x ∈ K : f(x) = 0 ⇒ x = 0} ,

Res0,1(K) := Res0(K) ∩ Res1(K) .

As explained in the introduction to this chapter, we distinguish between the

properties of ∞R when describing the embedding. More precisely, we consider the

cases that ∞R is right but not left absorbing, ∞R is left but not right absorbing,

and ∞R is absorbing.

∞R is right but not left absorbing

Lemma 5.33. Let L = (L,≤) be a finite lattice, a ∈ L \ {1}, and f ∈ Res1(L).

Then there exists an element b ∈ L \ {1} such that fb,0 = fa,0 ◦ f .

Proof. Define b :=
∨
{x ∈ L | f(x) ≤ a}. Then f(x) ≤ a ⇔ x ≤ b holds for every

x ∈ L and it follows that fb,0 = fa,0 ◦ f . Because of f(1) = 1 and a < 1, it cannot

hold that b = 1.

Lemma 5.34. Let L = (L,≤) be a finite lattice and (S,∨, ◦) a simple subsemiring

of (Res1(L),∨, ◦) that fulfils (5.6). Then it also fulfils (5.7).

Proof. Define the set Z := {f ∈ S | ∀a ∈ L \ {1} : fa,0 � f} and the equivalence

relation ∼ on S with the equivalence classes S \ Z and {z} for every z ∈ Z. Let

f, g, h ∈ S with f ∼ g and f 6= g. Consequently, f and g must be contained in S \Z
and hence there exist a, b ∈ L \ {1} with fa,0 ≤ f and fb,0 ≤ g. One can easily show

that fa,0 ≤ f ∨ h, fa,0 ≤ h ◦ f , and fc,0 ≤ f ◦ h for some c ∈ L \ {1} holds for every

h ∈ S, what yields f ∨h, f ◦h, h◦ f ∈ S \Z. Analogously, one can show g∨h, g ◦h,

h ◦ g ∈ S \Z and it follows that f ∨h ∼ g ∨h, f ◦h ∼ g ◦h, and h ◦ f ∼ h ◦ g. Thus,

∼ is a congruence. Since ∼ must be trivial and S \ Z is a class with more than one

element, ∼= S × S follows. Hence, Z = ∅.

Note in the following that End(M,+) = JM(M,≤) holds for a finite idempotent

semimodule (M,+).

Proposition 5.35. Let ∞R be right but not left absorbing. Then there exists a

finite lattice L with more than two elements such that (R,+, ·) is isomorphic to a

subsemiring of (Res1(L),∨, ◦) that fulfils (5.6), (5.7), and (5.8).
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Proof. By Proposition 5.21, there exists a finite idempotent irreducible R-semi-

module (M,+). By Lemma 5.9, (R,+, ·) is isomorphic to the subsemiring

(T (R),+, ◦) of (JM(M,≤),+, ◦). By Proposition 5.26, (M,+) has a neutral ele-

ment 0M , i.e. (M,≤) is a lattice, and R0M = {0M} holds. Proposition 5.26

furthermore yields R∞M = {∞M}. Thus, (T (R),+, ◦) is even a subsemiring of

(Res1(M,≤),+, ◦). The lattice (M,≤) must have more than two elements because

of |R| > 2. Now, (5.6) follows by Proposition 5.31, (5.7) by Lemma 5.34, and (5.8)

by Proposition 5.25.

Example 5.36. Consider the finite simple additively idempotent semiring (R,+, ·)
with the following operation tables:

+ a b c

a a b c

b b b c

c c c c

· a b c

a a a c

b a b c

c a c c

The greatest element c of this semiring is right but not left absorbing. Let

L = ({0, 1, 2},≤) be the total order of three elements and consider the semiring

(Res1(L),∨, ◦). This semiring consists of the mappings α, β, and γ, which are of the

following form and fulfil the following operation tables:

x 0 1 2

α(x) 0 0 2

β(x) 0 1 2

γ(x) 0 2 2

∨ α β γ

α α β γ

β β β γ

γ γ γ γ

◦ α β γ

α α α γ

β α β γ

γ α γ γ

Clearly, (Res1(L),∨, ◦) fulfils (5.6), (5.7), and (5.8) and the semiring (R,+, ·) is

isomorphic to (Res1(L),∨, ◦).

∞R is left but not right absorbing

To achieve a similar result for the case that ∞R is left but not right absorbing, we

need some preparation.

Let L = (L,≤) be a finite lattice with supremum ∨ and infimum ∧. Then the

dual lattice Ld = (L,≥) of L has the supremum ∨d := ∧, the infimum ∧d := ∨, the

least element 0Ld = 1L, and the greatest element 1Ld = 0L.

For two mappings f, g : S → S on a set S, we define f ◦d g := g ◦ f .
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For a lattice L, we define Rd(L) := {f+ | f ∈ Res(L)}, i.e. Rd(L) is the set

of residuals. For a subset S of Res(L) we define S+ := {f+ | f ∈ S}. It holds that

Rd(L) = Res(Ld) and in particular

(Res(L),∨, ◦) ∼= (Rd(L),∧, ◦d) = (Res(Ld),∨d, ◦d) ,

where Ω : f 7→ f+ is an isomorphism between (Res(L),∨, ◦) and (Rd(L),∧, ◦d)
(see [7]).

Lemma 5.37. Let L = (L,≤) be a lattice. Then

(Res1(L),∨, ◦) ∼= (Res0(L
d),∨d, ◦d) .

Moreover, if (S,∨, ◦) is a subsemiring of (Res1(L),∨, ◦), then (S+,∨d, ◦d) is a sub-

semiring of (Res0(L
d),∨d, ◦d) and (S,∨, ◦) ∼= (S+,∨d, ◦d) holds.

Proof. Let f ∈ Res1(L) and y ∈ L. Since the set {x ∈ L | f(x) ≤ y} is closed

under
∨

, we have that f+(y) =
∨
{x ∈ L | f(x) ≤ y} = 1L implies 1L = f(1L) ≤ y,

i.e. y = 1L. Because of 1L = 0Ld , we have f+ ∈ Res0(L
d). Now let g ∈ Res(L)

such that g+ ∈ Res0(L
d), i.e. g+(y) = 0Ld = 1L implies y = 0Ld = 1L. It fol-

lows that g(1L) = g++(1L) =
∧
{y ∈ L | g+(y) ≥ 1L} =

∧
{1L} = 1L. Thus,

g ∈ Res1(L). Hence, Ω|Res1(L) is an isomorphism between (Res1(L),∨, ◦) and

(Res0(L
d),∨d, ◦d), and for every subsemiring (S,∨, ◦) of (Res1(L),∨, ◦), we have

(S,∨, ◦) ∼= (Ω(S),∨d, ◦d) and S+ = Ω(S) ⊆ Res0(L
d).

Let L = (L,≤) be a finite nontrivial lattice and define L− := L \ {0L} and

L− := (L−,≤ ∩ (L− × L−)). Then let ΨL be the mapping defined by

ΨL : Res0(L)→ JM(L−) , f 7→ f |L− .

The following lemma is easy to prove.

Lemma 5.38. Let L = (L,≤) be a finite nontrivial lattice. Then ΨL is an iso-

morphism between (Res0(L),∨, ◦) and (JM(L−),∨, ◦). In particular, (ΨL(S),∨, ◦)
is a subsemiring of (JM(L−),∨, ◦) and (S,∨, ◦) ∼= (ΨL(S),∨, ◦) holds for every sub-

semiring (S,∨, ◦) of (Res0(L),∨, ◦).
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Lemma 5.39. Let K = (K,≤) be a finite lattice and L := Kd. Moreover, let

(S,∨, ◦) be a subsemiring of (Res1(K),∨, ◦) that fulfils (5.6), (5.7), and (5.8).

Then (ΨL(S+),∨d, ◦) is a subsemiring of (JM(L−),∨d, ◦) (where ∨d refers to the

supremum in L = Kd), which fulfils (5.3), (5.4), and (5.5).

Proof. (S+,∨d, ◦d) is by Lemma 5.37 a subsemiring of (Res0(L),∨d, ◦d) and therefore

(S+,∨d, ◦) is a subsemiring of (Res0(L),∨d, ◦). By Lemma 5.38, (ΨL(S+),∨d, ◦) is a

subsemiring of (JM(L−),∨d, ◦). By (5.6), we have fa,0K ∈ S for every a ∈ K \ {1K}
and therefore f+a,0K ∈ S

+ for every a ∈ K \ {1K}, where

f+a,0K(y) =
∨
{x ∈ K | fa,0K(x) ≤ y} =

1K if y = 1K ,

a else .

Because of L− = L \ {0L} = K \ {1K}, we get ΨL(f+a,0K) = f+a,0K |K\{1K} = ka.

Consequently, condition (5.3) is fulfilled. Now let a ∈ K and b ∈ K \{0K, 1K}. Then

by (5.8), there exists an f ∈ S with f(b) = a and f+(a) =
∨
{x ∈ K | f(x) ≤ a} ≥ b

holds. Hence, a ≤ x implies b ≤ f+(a) ≤ f+(x) for every x ∈ K. Let x ∈ K with

a � x and assume b ≤ f+(x). It follows that a = f(b) ≤ f(f+(x)) ≤ id(x) = x,

what is a contradiction, and we derive the equivalence a ≤ x⇔ b ≤ f+(x) for every

x ∈ K. If we use the order ≤d of L = Kd, then we have f+(x) ≤d b if x ≤d a
and f+(x) �d b else. Hence, kb ∨d f+(x) = b if x ≤d a and kb ∨d f+(x) >d b else.

The mapping ΨL(kb ∨d f+) is then the required mapping for a and b in condition

(5.5). Condition (5.4) is satisfied by (ΨL(S+),∨d, ◦) because (S,∨, ◦) fulfils (5.7)

and (S,∨) is isomorphic to (ΨL(S+),∨d).

Proposition 5.40. Let ∞R be left but not right absorbing. Then there exists a

finite nontrivial semilattice L such that (R,+, ·) is isomorphic to a subsemiring of

(JM(L),∨, ◦) that fulfils (5.3), (5.4), and (5.5).

Proof. Define r ?s := s ·r for all r, s ∈ R. Then (R,+, ?) is a finite simple additively

idempotent semiring such that ∞R is right but not left absorbing. By Proposi-

tion 5.35, there exists a finite lattice K = (K,≤) with |K| ≥ 3 such that (R,+, ?) is

isomorphic to a subsemiring (S,∨, ◦) of (Res1(K),∨, ◦) that fulfils conditions (5.6),

(5.7), and (5.8). Let L := Kd. By Lemma 5.39, (ΨL(S+),∨d, ◦) is a subsemiring of

(JM(L−),∨d, ◦), which fulfils (5.3), (5.4), and (5.5). L− is clearly nontrivial. Be-

cause of (R,+, ?) ∼= (S,∨, ◦) ∼= (S+,∨d, ◦d) by Lemma 5.37, we furthermore find

(R,+, ·) ∼= (S+,∨d, ◦) ∼= (ΨL(S+),∨d, ◦) by Lemma 5.38.
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Example 5.41. Consider the finite simple additively idempotent semiring (R,+, ·)
with the following operation tables:

+ a b c

a a b c

b b b c

c c c c

· a b c

a a a a

b a b c

c c c c

The greatest element c of this semiring is left but not right absorbing. Let

L = ({0, 1},≤) be the total order of two elements and consider the semiring

(JM(L),∨, ◦). This semiring consists of the mappings α, β, and γ, which are of

the following form and fulfil the following operation tables:

x 0 1

α(x) 0 0

β(x) 0 1

γ(x) 1 1

∨ α β γ

α α β γ

β β β γ

γ γ γ γ

◦ α β γ

α α α α

β α β γ

γ γ γ γ

Clearly, (JM(L),∨, ◦) fulfils (5.3), (5.4), and (5.5) and the semiring (R,+, ·) is iso-

morphic to (JM(L),∨, ◦).

∞R is absorbing

The following proposition is [31, Theorem 2.2] for finite semilattices. Note that for

a finite semilattice L the mappings fa,b with a ∈ L \ {1} and b ∈ L are exactly the

mappings of range at most two in JM1(L).

Proposition 5.42. Let L = (L,≤) be a finite nontrivial semilattice and (S,∨, ◦)
a subsemiring of (JM1(L),∨, ◦) that fulfils (5.1). Then (S,∨, ◦) is simple iff it

fulfils (5.2).

Proposition 5.43. Let ∞R be absorbing. Furthermore, let (M,+) be a finite

idempotent irreducible R-semimodule with join-irreducible greatest element. Then

(R,+, ·) is isomorphic to a subsemiring of (JM1(M,≤),+, ◦) that fulfils (5.1)

and (5.2).

Proof. By Lemma 5.9, (R,+, ·) is isomorphic to a subsemiring of (JM(M,≤),+, ◦)
and because of R∞M = {∞M} by Proposition 5.26 even of (JM1(M,≤),+, ◦). First

consider the case that (R,+) has no neutral element. Assume that (M,+) has a neu-

tral element 0M . Let z be the unique lower neighbour of ∞M . By Proposition 5.32,
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rz,0M is contained in R and by Corollary 5.10 it is a neutral element in (R,+). This

is a contradiction. Hence, (M,+) has no neutral element. Therefore, condition (5.1)

is satisfied by Proposition 5.32 and (5.2) holds by Proposition 5.42.

Now let (R,+) have a neutral element 0R. Then (M,+) has also a neutral

element 0M , by Proposition 5.27. Because of R∞M = {∞M}, it follows by Propo-

sition 5.32 that ra,0M ∈ R for every a ∈M \ {∞M}. Since ∞R is left absorbing, 0R

cannot be right absorbing. By Lemma 5.28, it follows that R0M = M . Let b ∈ M .

Then there exists an sb ∈ R with sb0M = b and it follows that ra,b = sbra,0M ∈ R.

Thus, (5.1) is fulfilled and (5.2) follows by Proposition 5.42.

Example 5.44. Consider the finite simple additively idempotent semiring (R,+, ·)
with the following operation tables:

+ a b c d e

a a b c d e

b b b d d e

c c d c d e

d d d d d e

e e e e e e

· a b c d e

a a b a b e

b a b e e e

c c d c d e

d c d e e e

e e e e e e

The greatest element e of this semiring is absorbing and the subsemigroup

({a, c, e},+) of (R,+) is a finite idempotent irreducible R-semimodule, whose

greatest element e is join-irreducible. Consider the subsemiring (S,+, ◦) of

(JM1({a, c, e},≤),+, ◦) consisting of the mappings α, β, γ, δ, and ε, which are of

the following form and fulfil the following operation tables:

x a c e

α(x) a a e

β(x) a e e

γ(x) c c e

δ(x) c e e

ε(x) e e e

∨ α β γ δ ε

α α β γ δ ε

β β β δ δ ε

γ γ δ γ δ ε

δ δ δ δ δ ε

ε ε ε ε ε ε

◦ α β γ δ ε

α α β α β ε

β α β ε ε ε

γ γ δ γ δ ε

δ γ δ ε ε ε

ε ε ε ε ε ε

The semiring (S,+, ◦) fulfils (5.1) and (5.2) and the semiring (R,+, ·) is isomorphic

to (S,+, ◦).
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5.3 Subsemirings of (JM(L),∨, ◦)

In this section we consider the other direction, i.e. we start with a semilattice L and

show that certain subsemirings of (JM(L),∨, ◦) are simple.

Proposition 5.45. Let L be a finite lattice with more than two elements and let

(R,∨, ◦) be a subsemiring of (Res1(L),∨, ◦) that fulfils (5.6), (5.7), and (5.8). Then

(R,∨, ◦) is a finite simple additively idempotent semiring and the greatest element

is right but not left absorbing.

Proof. It is clear that (R,∨, ◦) is a finite additively idempotent semiring; its greatest

element is∞R = f0,0. It is easy to see that each element fa,0 ∈ R, where a ∈ L\{1},
is right absorbing, hence in particular f0,0 is right and not left absorbing.

To prove the simplicity, let ∼ be a congruence on (R,∨, ◦), and suppose that

∼ 6= idR, i.e. there are f, g ∈ R such that f 6= g and f ∼ g. Hence, there exists an

x ∈ L such that f(x) 6= g(x), and we may assume that f(x) 6≤ g(x) =: a. Then we

have fa,0 ∈ R, so that fa,0◦f ∼ fa,0◦g, and there are b, c ∈ L such that fa,0◦f = fb,0

and fa,0 ◦ g = fc,0. Furthermore, fb,0(x) = 1 and fc,0(x) = 0, so that c 6≤ b. We have

shown that there are some elements b, c ∈ L with c 6≤ b such that fb,0 ∼ fc,0.
Now we show that for all z ∈ L \ {0, 1} there exists a y ∈ L, y < z such that

fz,0 ∼ fy,0. So let z ∈ L \ {0, 1} and let h ∈ R such that h(z) = c. Considering

k := h ∨ fz,0 it is easy to see that fc,0 ◦ k = fz,0. On the other hand there exists a

y ∈ L such that fb,0 ◦ k = fy,0, and it holds that fy,0(z) = 1. From this and since

fz,0 ≤ fy,0, it follows that y < z. Furthermore, we have fz,0 = fc,0◦k ∼ fb,0◦k = fy,0,

as desired.

By applying the last paragraph repeatedly, we see that fz,0 ∼ f0,0 for all z ∈
L \ {1}. Now let f ∈ R be arbitrary and let z ∈ L \ {1} such that fz,0 ≤ f . Then

we get f = fz,0 ∨ f ∼ f0,0 ∨ f = f0,0. Hence, ∼= R×R, as desired.

Proposition 5.46. Let L be a nontrivial finite semilattice and (R,∨, ◦) a subsemi-

ring of (JM(L),∨, ◦) that fulfils (5.3), (5.4), and (5.5). Then (R,∨, ◦) is a finite

simple additively idempotent semiring and the greatest element is left but not right

absorbing.

Proof. It is clear that (R,∨, ◦) is a finite additively idempotent semiring; its greatest

element is ∞R = k1. Each element ka ∈ R, where a ∈ L, is left absorbing, hence in

particular k1 is left but not right absorbing.

To prove the simplicity, let ∼ be a congruence on (R,∨, ◦), and suppose ∼ 6= idR,

i.e. there are f, g ∈ R such that f 6= g and f ∼ g. There exists an x ∈ L such
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that f(x) 6= g(x), and we may assume c := f(x) 6≤ g(x) =: b. Then we have

kc = f ◦ kx ∼ g ◦ kx = kb.

Now for all z ∈ L \ {1} there exists a y ∈ L, y > z such that kz ∼ ky. Indeed,

let h ∈ R such that h(x) = z if x ≤ b, and h(x) > z else. Then in particular

y := h(c) > z, and ky = h ◦ kc ∼ h ◦ kb = kz.

By applying the last paragraph repeatedly, we see that kz ∼ k1 for all z ∈ L. Now

let f ∈ R be arbitrary and let z ∈ L such that kz ≤ f . Then f = kz∨f ∼ k1∨f = k1.

Consequently, ∼= R×R, as desired.

Proposition 5.47. Let L be a finite nontrivial semilattice and let (R,∨, ◦) be a

subsemiring of (JM1(L),∨, ◦) that fulfils (5.1) and (5.2). Then (R,∨, ◦) is a finite

simple additively idempotent semiring with absorbing greatest element.

Proof. Clearly, (R,∨, ◦) is finite and additively idempotent. The simplicity holds by

Proposition 5.42. The greatest element is fa,1 = k1, for arbitrary a ∈ L \ {1}, which

is absorbing.

Proposition 5.48. Let L be a finite nontrivial semilattice and (R,∨, ◦) a simple

subsemiring of (JM1(L),∨, ◦) that fulfils (5.1) and |R| > 2. Then (L,∨) is an

irreducible R-semimodule.

Proof. (L,∨) is clearly an R-semimodule. By (5.1), (L,∨) is also an R-nonidentity-

semimodule with |RL| > 1. Let (K,∨) be an R-subsemimodule of (L,∨) with

|K| > 1. Then there exists an a ∈ K with a 6= 1L and b = fa,b(a) ∈ K follows for

every b ∈ L. Thus, K = L and (L,∨) is consequently sub-irreducible.

Now let ∼ be a semimodule congruence on (L,∨) with ∼ 6= idL. There must

exist some a, b ∈ L with a 6= b and a ∼ b. Without loss of generality we may assume

say b � a. It follows that a 6= 1. Choose c ∈ L arbitrarily. Then c = fa,c(a) ∼
fa,c(b) = 1. Hence, c ∼ 1 for every c ∈ L. Thus, ∼= L×L. We conclude that (L,∨)

is quotient-irreducible.

5.4 Characterisation theorems

Now we are ready to state the characterisation theorems for finite simple additively

idempotent semirings of all cases mentioned in the introduction of this chapter,

except Case 4b.

The following theorem states that the finite simple additively idempotent semi-

rings with greatest element that is neither left nor right absorbing are exactly the
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finite simple additively idempotent semirings with zero. It follows from Proposi-

tion 5.30. The second part of the theorem is obvious.

Theorem 5.49. Let (R,+, ·) be a finite simple additively idempotent semiring with

|R| > 2 and such that ∞R is neither left nor right absorbing. Then (R,+, ·) is

isomorphic to a semiring as in Theorem 1.11. Conversely, every semiring in Theo-

rem 1.11 has a greatest element, which is neither left nor right absorbing.

We get the following theorem from Proposition 5.35 and Proposition 5.45.

Theorem 5.50. Let L be a finite lattice with more than two elements and let

(R,∨, ◦) be a subsemiring of (Res1(L),∨, ◦) that fulfils (5.6), (5.7), and (5.8). Then

(R,∨, ◦) is a finite simple additively idempotent semiring and the greatest element

is right but not left absorbing. Conversely, every finite simple additively idempotent

semiring (S,+, ·) with |S| > 2 and with right but not left absorbing greatest element

is isomorphic to such a semiring.

Proposition 5.40 and Proposition 5.46 yield the following result.

Theorem 5.51. Let L be a finite nontrivial semilattice and (R,∨, ◦) a subsemi-

ring of (JM(L),∨, ◦) that fulfils (5.3), (5.4), and (5.5). Then (R,∨, ◦) is a finite

simple additively idempotent semiring and the greatest element is left but not right

absorbing. Conversely, every finite simple additively idempotent semiring (S,+, ·)
with |S| > 2 and with left but not right absorbing greatest element is isomorphic to

such a semiring.

The next theorem holds by Proposition 5.43, Proposition 5.47, and Proposi-

tion 5.48.

Theorem 5.52. Let L be a nontrivial finite semilattice such that 1L is join-

irreducible and let (R,∨, ◦) be a subsemiring of (JM1(L),∨, ◦) that fulfils (5.1) and

(5.2). Then (R,∨, ◦) is a finite simple additively idempotent semiring with absorb-

ing greatest element and it possesses an idempotent irreducible R-semimodule, whose

greatest element is join-irreducible. Conversely, every finite simple additively idem-

potent semiring (S,+, ·) with |S| > 2, with absorbing greatest element, and that

possesses an idempotent irreducible S-semimodule, whose greatest element is join-

irreducible, is isomorphic to such a semiring.
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5.5 Isomorphic semirings

In this section we show that if we have two semirings as in Theorem 5.50, Theo-

rem 5.51, or Theorem 5.52 that are isomorphic, then the corresponding semilattices

have to be isomorphic as well. In [61], the same was done for semirings as in Theo-

rem 1.11 (Theorem 5.49).

Lemma 5.53. Let L be a finite lattice and (R,∨, ◦) a subsemiring of (Res1(L),∨, ◦)
that fulfils (5.6). Then

Γ : L \ {1} → f0,0 ◦R := {f0,0 ◦ f | f ∈ R} , a 7→ fa,0

is a dual order isomorphism between (L \ {1},≤) and (f0,0 ◦R,≤).

Proof. First we verify f0,0 ◦ R = {fa,0 | a ∈ L \ {1}}. The inclusion “⊆” holds

by Lemma 5.33. Now let a ∈ L \ {1}. Then fa,0 = f0,0 ◦ fa,0 ∈ f0,0 ◦ R. This

proves the equality and it follows that Γ is well-defined and surjective. Because

of a ≤ b ⇔ fa,0 ≥ fb,0 for all a, b ∈ L \ {1}, we find that Γ is a dual order

isomorphism.

Lemma 5.54. Let L be a finite semilattice and (R,∨, ◦) a subsemiring of

(JM(L),∨, ◦) that fulfils (5.3). Then

Λ : L→ R ◦ k1 := {f ◦ k1 | f ∈ R} , a 7→ ka

is an order isomorphism between L and (R ◦ k1,≤).

Proof. First we verify R ◦ k1 = {ka | a ∈ L}. Let f ∈ R. Then f ◦ k1 = kf(1) ∈ {ka |
a ∈ L}. Now let a ∈ L. Then ka = ka ◦ k1 ∈ R ◦ k1. This proves the equality and

it follows that Λ is well-defined and surjective. Because of a ≤ b ⇔ ka ≤ kb for all

a, b ∈ L, we find that Λ is an order isomorphism.

Lemma 5.55. Let L be a finite semilattice, (R,∨, ◦) a subsemiring of (JM1(L),∨, ◦)
that fulfils (5.1) and let a, b ∈ L \ {1}. Then

Φ : L→ R ◦ fa,b := {f ◦ fa,b | f ∈ R} , c 7→ fa,c

is an order isomorphism between L and (R ◦ fa,b,≤).

Proof. First we verify R ◦ fa,b = {fa,c | c ∈ L}. Let f ∈ R. Then f ◦ fa,b =

fa,f(b) ∈ {fa,c | c ∈ L}. Now let c ∈ L. Then fa,c = fb,c ◦ fa,b ∈ R ◦ fa,b. This
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proves the equality and it follows that Φ is well-defined and surjective. Because of

c ≤ d⇔ fa,c ≤ fa,d for all c, d ∈ L, we find that Φ is an order isomorphism.

Proposition 5.56. Let Li = (Li,≤) be a finite lattice and (Ri,∨, ◦) a subsemiring

of (Res1(Li),∨, ◦) as in Theorem 5.50 for i = 1, 2. If (R1,∨, ◦) and (R2,∨, ◦) are

isomorphic, then L1 and L2 are also isomorphic.

Proof. Let (R1,∨, ◦) and (R2,∨, ◦) be isomorphic and let Ω : R1 → R2 be an

isomorphism. Let 0i := 0Li for i = 1, 2. Since f0i,0i is the greatest element in

(Ri,≤), we have Ω(f01,01) = f02,02 . It follows that Ω(f01,01◦R1) = Ω(f01,01)◦Ω(R1) =

f02,02 ◦ R2. Hence, (f01,01 ◦ R1,≤) ∼= (f02,02 ◦ R2,≤). With Lemma 5.53, we find

(L1 \ {1L1},≤) ∼= (f01,01 ◦ R1,≥) ∼= (f02,02 ◦ R2,≥) ∼= (L2 \ {1L2},≤). It trivially

follows that L1
∼= L2.

Proposition 5.57. Let Li = (Li,≤) be a finite semilattice and (Ri,∨, ◦) a subsemi-

ring of (JM(Li),∨, ◦) as in Theorem 5.51 for i = 1, 2. If (R1,∨, ◦) and (R2,∨, ◦)
are isomorphic, then L1 and L2 are also isomorphic.

Proof. Let (R1,∨, ◦) and (R2,∨, ◦) be isomorphic and let Ω : R1 → R2 be an

isomorphism. Let here 1i := 1Li for i = 1, 2. Since k1i is the greatest element

in (Ri,≤), we have Ω(k11) = k12 . It follows that Ω(R1 ◦ k11) = Ω(R1) ◦ Ω(k11) =

R2 ◦k12 . Hence, (R1 ◦k11 ,≤) ∼= (R2 ◦k12 ,≤). By Lemma 5.54, L1
∼= (R1 ◦ k11 ,≤) ∼=

(R2 ◦ k12 ,≤) ∼= L2 follows.

Proposition 5.58. Let Li = (Li,≤) be a finite semilattice and (Ri,∨, ◦) a subsemi-

ring of (JM1(Li),∨, ◦) as in Theorem 5.52 for i = 1, 2. If (R1,∨, ◦) and (R2,∨, ◦)
are isomorphic, then L1 and L2 are also isomorphic.

An element a in a finite semilattice L is called a coatom of L if it is a lower

neighbour of 1L. By CoAt(L) we denote the set of coatoms in L.

Proof. Let (R1,∨, ◦) and (R2,∨, ◦) be isomorphic and let Ω : R1 → R2 be an iso-

morphism. One can easily show that

CoAt(JM1(Li),≤) = {fa,b | a ∈ Min(Li), b ∈ CoAt(Li)}

holds. Thus, for a ∈ Min(L1) and b ∈ CoAt(L1) there exist a′ ∈ Min(L2) and

b′ ∈ CoAt(L2) with Ω(fa,b) = fa′,b′ . We find that Ω(R1 ◦ fa,b) = Ω(R1) ◦ Ω(fa,b) =

R2 ◦ fa′,b′ . Hence, (R1 ◦ fa,b,≤) ∼= (R2 ◦ fa′,b′ ,≤). By Lemma 5.55, L1
∼=

(R1 ◦ fa,b,≤) ∼= (R2 ◦ fa′,b′ ,≤) ∼= L2 follows.
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5.6 Neutral elements

Additively neutral element

If the greatest element 1 of a finite semilattice is join-irreducible, then we denote

the unique lower neighbour of 1 by 1∗.

Proposition 5.59. Let L be a finite lattice and (R,∨, ◦) a semiring as in Theo-

rem 5.50. Then (R,∨) has a neutral element iff 1 is join-irreducible. If the neutral

element exists, then it is right but not left absorbing.

Proof. If 1 is join-irreducible, then f1∗,0 is clearly a neutral element in (R,∨). If

(R,∨) has a neutral element f0, then it must fulfil f0(a) ≤ fa,0(a) = 0 for every

a ∈ L \ {1}. For all a, b ∈ L \ {1}, we have a ∨ b 6= 1 because of f0(a ∨ b) =

f0(a) ∨ f0(b) = 0. Hence, c ∨ d = 1 implies c = 1 or d = 1 for c, d ∈ L, i.e. 1 is

join-irreducible.

The element f1∗,0 is right absorbing because of f(0) = 0 and f(1) = 1 for

every f ∈ R. But it is not left absorbing because of f1∗,0 ◦ fa,0 = fa,0 for every

a ∈ L \ {1}.

Proposition 5.60. Let L be a finite semilattice and (R,∨, ◦) a semiring as in

Theorem 5.51. Then (R,∨) has a neutral element iff L is a lattice. If the neutral

element exists, then it is left but not right absorbing.

Proof. If L is a lattice, then k0 is clearly a neutral element in (R,∨). If (R,∨) has

a neutral element f0, then it must fulfil f0(x) ≤ ka(x) = a for all a, x ∈ L. Thus,

f0(x) is a least element in L for every x ∈ L, i.e. L is a lattice and f0 = k0 holds.

Clearly, k0 is left absorbing, but it is not right absorbing because of k1 ◦k0 = k1.

Proposition 5.61. Let L be a finite semilattice and (R,∨, ◦) a semiring as in

Theorem 5.52. Then (R,∨) has a neutral element iff L is a lattice. If the neutral

element exists, then it is neither left nor right absorbing.

Proof. If L is a lattice, then f1∗,0 is a neutral element in (R,∨). If (R,∨) has a

neutral element f0, then it must fulfil f0(x) ≤ fx,a(x) = a for every a ∈ L and

x ∈ L \ {1}. Thus, for x ∈ L \ {1}, f0(x) is a least element in L, i.e. L is a

lattice and f0(x) = 0 holds. Since f1∗,1 = k1 is absorbing, f0 cannot be left or right

absorbing.
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The next proposition shows that the finite simple additively idempotent semi-

rings with additively neutral element and absorbing greatest element are already

characterised by Theorem 5.52.

Proposition 5.62. Let (R,+, ·) be a finite simple additively idempotent semi-

ring with additively neutral element 0R and let (M,+) be a finite idempotent sub-

irreducible R-semimodule. If ∞R is right absorbing, then ∞M is join-irreducible.

Proof. Let a, b ∈ M with a + b = ∞M . Since ∞R is right absorbing, 0R is not

left absorbing. By Lemma 5.28-3., 0R∞M = ∞M holds and we find that ∞M =

0R∞M = 0R(a+ b) = 0Ra+ 0Rb. By Lemma 5.28-1., a =∞M or b =∞M follows,

i.e. ∞M is join-irreducible.

Therefore, the classification of finite simple semirings with additively neutral

element is complete and can be summarised as in the next theorem.

Theorem 5.63. Let (R,+, ·) be a finite semiring with additively neutral element.

Then (R,+, ·) is simple iff one of the following holds:

1. |R| ≤ 2.

2. (R,+, ·) ∼= (Matn(Fq),+, ·) for some finite field Fq and some n ≥ 1.

3. (R,+, ·) is a zero multiplication ring of prime order.

4. (R,+, ·) is isomorphic to a semiring as in Theorem 1.11.

5. (R,+, ·) is isomorphic to a semiring as in Theorem 5.50, where 1L is join-

irreducible.

6. (R,+, ·) is isomorphic to a semiring as in Theorem 5.51, where L is a lattice.

7. (R,+, ·) is isomorphic to a semiring as in Theorem 5.52, where L is a lattice.

Multiplicatively neutral element

Proposition 5.64. Let L be a lattice and (R,∨, ◦) a semiring as in Theorem 5.50.

Then (R, ◦) has a neutral element iff idL ∈ R. If idL ∈ R, then 1L is join-irreducible.

Proof. If idL ∈ R, then it is clearly a neutral element in (R, ◦). Let (R, ◦) have a

neutral element e and let x ∈ L. For a ∈ L \ {0, 1}, there exists an f ∈ R with

f(a) = x. It follows that e(x) = e(f(a)) = (e ◦ f)(a) = f(a) = x, i.e. idL = e ∈ R.

If idL ∈ R, then there exists an a ∈ L\{1} with fa,0 ≤ idL, i.e. x � a⇔ x = 1 for

every x ∈ L. Hence, a is the unique lower neighbour of 1, i.e. 1 is join-irreducible.
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Proposition 5.65. Let L be a semilattice and (R,∨, ◦) a semiring as in Theo-

rem 5.51. Then (R, ◦) has a neutral element iff idL ∈ R. If idL ∈ R, then L is a

lattice.

Proof. If idL ∈ R, then it is clearly a neutral element in (R, ◦). If (R, ◦) has a

neutral element e, then e(x) = e(kx(x)) = (e ◦ kx)(x) = kx(x) = x for every x ∈ L,

i.e. idL = e ∈ R.

If idL ∈ R, then there exists an a ∈ L with ka ≤ idL. Thus, a = ka(x) ≤
idL(x) = x for every x ∈ L. Hence, a is a least element in L, i.e. L is a lattice.

Proposition 5.66. Let L be a semilattice and (R,∨, ◦) a semiring as in Theo-

rem 5.52. Then (R, ◦) has a neutral element iff idL ∈ R. If idL ∈ R, then L is a

lattice.

Proof. If idL ∈ R, then it is clearly a neutral element in (R, ◦). Let (R, ◦) have a

neutral element e and let x ∈ L. For a ∈ L \ {1}, the equality e(x) = e(fa,x(a)) =

(e ◦ fa,x)(a) = fa,x(a) = x holds, i.e. idL = e ∈ R.

If idL ∈ R, then there exists a ∈ L \ {1} and b ∈ L with f1∗,b ≤ fa,b ≤ idL.

We find that x ≤ 1∗ ⇒ b ≤ x for every x ∈ L and it follows that b ≤ x for every

x ∈ L \ {1}. As b ≤ 1 holds anyway it follows that b is a least element in L. Thus,

L is a lattice.

From the results in this section it also follows that the existence of a multiplica-

tively neutral element implies the existence of an additively neutral element for all

semirings in Theorem 5.50, Theorem 5.51, and Theorem 5.52.

5.7 The remaining case

The semirings that elude our characterisation theorems are the finite simple addi-

tively idempotent semirings with absorbing greatest element, which possess a finite

idempotent irreducible semimodule, whose greatest element is join-reducible. In this

section we present different conjectures dependent on whether there exists a neutral

element for such a semimodule.

Irreducible semimodule with neutral element

If the finite simple additively idempotent semiring with absorbing greatest element

possesses a finite idempotent irreducible semimodule with a neutral element, we con-
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jecture that the characterisation is similar to Theorem 5.52. In fact, our presumed

characterisation in this case is based on the following conjecture.

Conjecture 5.67. Let (R,+, ·) be a finite simple additively idempotent semiring

with |R| > 2 and let (M,+) be a finite idempotent R-semimodule. Then (M,+) is

irreducible iff (M,+) is faithful of smallest cardinality.

One direction of this conjecture, namely that a faithful semimodule of smallest

cardinality is irreducible, is already proven by Proposition 5.18. Concerning the

other direction, one can show that, similarly to Proposition 5.48, the semilattices

in Theorem 5.49, Theorem 5.50, and Theorem 5.51 are irreducible semimodules.

With the results from Section 5.5 it follows that for every semiring characterised in

Section 5.4 there exists up to isomorphism a unique idempotent irreducible semi-

module. Thus, irreducible semimodules are also faithful semimodules of smallest

cardinality in these cases, and we believe that this holds for every idempotent irre-

ducible semimodule over a finite simple additively idempotent semiring with more

than two elements.

If the finite simple additively idempotent semiring with absorbing greatest ele-

ment admits a faithful semimodule of smallest cardinality with a neutral element,

we can prove the following result.

Proposition 5.68. Let (R,+, ·) be a finite simple additively idempotent semiring

with |R| > 2 and let ∞R be absorbing. Furthermore, let (M,+) be a faithful R-

semimodule of smallest cardinality with neutral element 0M . Then (R,+, ·) is iso-

morphic to a subsemiring of (JM1(M,≤),+, ◦) that fulfils (5.1) and (5.2).

We need some preparation for the proof. Let L = (L,≤) be a finite semilattice

and o an element with o /∈ L. Then define L+ := L ∪ {o}, v:=≤ ∪({o} × L+)

and L+ := (L+,v), i.e. L+ is the semilattice L enriched by a new least element o.

L+ is therefore a lattice. Moreover, we use the notations L# := ((L+)d)− and

L# := L+ \ {1L}, i.e. L# = (L#,w ∩(L# × L#)) .

Lemma 5.69. Let L = (L,≤) be a finite semilattice. Then

(JM1(L),∨, ◦) ∼= (JM1(L
#),∨d, ◦d) .

Proof. We will prove that

(JM1(L),∨, ◦) ∼= (Res0,1(L+),∨, ◦) ∼= (Res0,1((L+)d),∨d, ◦d) ∼= (JM1(L
#),∨d, ◦d) .
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We have (L+)− = L. By Lemma 5.38, (Res0,1(L+),∨, ◦) is isomorphic to

(ΨL+(Res0,1(L+)),∨, ◦) and ΨL+(Res0,1(L+)) = JM1(L) holds. The second iso-

morphy holds because of Res0,1(L+)+ = Res0,1((L+)d) and Lemma 5.37. The third

isomorphy holds by the same arguments as for the first isomorphy.

Denote for the following lemma for a finite lattice L = (L,≤):

Ψ1 : JM1(L)→ Res0,1(L+) with Ψ1(f) : x 7→

f(x) if x ∈ L ,

0L+ else ,

Ψ2 : Res0,1(L+)→ Res0,1((L+)d) , f 7→ f+ ,

Ψ3 : Res0,1((L+)d)→ JM1(L
#) , f 7→ f |L+\{1L+

} .

This means Ψi is an isomorphism for the i-th isomorphy in the proof of Lemma 5.69.

Thus, Ψ3 ◦Ψ2 ◦Ψ1 is an isomorphism from (JM1(L),∨, ◦) to (JM1(L
#),∨d, ◦d).

Lemma 5.70. Let L = (L,≤) be a finite semilattice, a ∈ L \ {1L}, b ∈ L, and

ga,b := Ψ3 ◦Ψ2 ◦Ψ1(fa,b). If b = 1L, then ga,b = k1
L#

. If b 6= 1L, then

ga,b : x 7→

a if x ≤d b

1L# else,

where ≤d is the order in L#.

Proof. Let h := Ψ1(fa,b) and x ∈ L+. Then for h+ = Ψ2(h) we have

h+(x) =
∨
{y ∈ L+ | h(y) ≤ x}

=


∨
{0L+} = 0L+ = 1(L+)d if b � x ( ⇔ x �d b)

a if b ≤ x < 1L+ ( ⇔ 0(L+)d <
d x ≤d b)∨

L+ = 1L+ = 0(L+)d if x = 1L+ ( ⇔ x = 0(L+)d) .

With ga,b = Ψ3(h
+) = h+|L+\{1L+

}, the statement follows.

Proof of Proposition 5.68. The semimodule (M,+) is irreducible by Lemma 5.18

and idempotent by Lemma 5.20. M := (M,≤) is therefore a finite lattice. By

Lemma 5.69, (JM1(M),∨, ◦) ∼= (JM1(M
#),∨d, ◦d) holds, where ∨ refers to the su-

premum in M. Since (R,+, ·) is isomorphic to a subsemiring of (JM(M),∨, ◦) and
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because of R∞M = {∞M} by Proposition 5.26, it is isomorphic to a subsemi-

ring of (JM1(M),∨, ◦). Hence, it is also isomorphic to a subsemiring (S,∨d, ◦d)
of (JM1(M

#),∨d, ◦d). Clearly, (S,∨d, ◦) is a subsemiring of (JM1(M
#),∨d, ◦) and

it is simple. (M#,∨d) is therefore a faithful semimodule over (S,∨d, ◦). We will

show that it is of smallest cardinality. Let (N,+) be a faithful semimodule of

smallest cardinality over (S,∨d, ◦). By Lemma 5.20, it is idempotent and there-

fore a semilattice. We denote the corresponding ordered set by N := (N,≤) and

the supremum by g. Consequently, (S,∨d, ◦) is isomorphic to a subsemiring of

(JM1(N),g, ◦) and because of (JM1(N),g, ◦) ∼= (JM1(N
#),gd, ◦d) by Lemma 5.69

also to a subsemiring (T,gd, ◦d) of (JM1(N
#),gd, ◦d). (T,gd, ◦) is a subsemiring

of (JM1(N
#),gd, ◦) and (N#,gd) is therefore a faithful semimodule over (T,gd, ◦)

and also over (R,∨, ◦) since (R,∨, ◦) and (T,gd, ◦) are isomorphic. It follows that

|N | = |N#| ≥ |M | = |M#|. Thus, (M#,∨d) is a faithful semimodule of smallest

cardinality over (S,∨d, ◦).
The greatest element of (M#,∨d) is by construction join-irreducible. By Propo-

sition 5.43, fa,b ∈ S holds for every a ∈ M# \ {1M#} = M \ {1M} and every

b ∈M# ⊇M \ {1M}. By Lemma 5.70, we find fb,a ∈ R for all a, b ∈M \ {1M} and

fc,1M = k1M ∈ R for every c ∈ M \ {1M}. Hence, (5.1) is fulfilled and (5.2) follows

by Proposition 5.42.

If Conjecture 5.67 holds we can prove the following conjecture, which constitutes

another characterisation theorem.

Conjecture 5.71. Let L be a nontrivial finite lattice and let (R,∨, ◦) be a subsemi-

ring of (JM1(L),∨, ◦) that fulfils (5.1) and (5.2). Then (R,∨, ◦) is a finite simple

additively idempotent semiring with absorbing greatest element and it possesses an

idempotent irreducible R-semimodule with neutral element. Conversely, every finite

simple additively idempotent semiring (S,+, ·) with |S| > 2, with absorbing greatest

element, and that possesses an idempotent irreducible S-semimodule with neutral

element is isomorphic to such a semiring.

The first part holds by Proposition 5.47 and Proposition 5.48. The second part

would be implied by Conjecture 5.67 and Proposition 5.68.

Irreducible semimodule without neutral element

For the case that the finite simple additively idempotent semiring with absorbing

greatest element possesses a finite idempotent irreducible semimodule without neu-
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× =

L K L×K

� =

A

L K L�K

Figure 5.1: Left: The direct product of two semilattices. The black elements are the
elements of the set A. Right: The product L�K of the same semilattices.

tral element and with join-reducible greatest element, we have a construction of

semirings of join-morphisms of semilattices. In fact, we conjecture that this con-

struction covers these semirings. We need some preparation for it.

Definition 5.72. Let L = (L,≤) and K = (K,≤) be finite semilattices and let

A := {(x, y) ∈ L×K | x = 1L or y = 1K}. Then define

L�K := L×K / (idL×K ∪A×A) and L�K := (L�K , ≤) ,

where {(a, b)} ≤ A and {(a, b)} ≤ {(c, d)} iff a ≤ c and b ≤ d, for all {(a, b)},
{(c, d)} ∈ L�K \ {A}.

Note that every equivalence class in L�K, except A, has just one element, i.e.

L � K = {A} ∪
{
{(a, b)} | a ∈ L \ {1L}, b ∈ K \ {1K}

}
. See Figure 5.1 for an

example.

Definition 5.73. Let L = (L,≤) and K = (K,≤) be finite semilattices and let

f ∈ JM1(L) and g ∈ JM1(K). Then let f � g be the mapping in JM1(L � K)

defined by

(f � g)
(
[x, y]

)
= [f(x), g(y)]

for every (x, y) ∈ L×K, where [x, y] denotes the class of (x, y) in L�K.

Since f ∈ JM1(L) and g ∈ JM1(K), the mapping f � g is clearly well-defined.

Note that for f1, f2 ∈ JM1(L) and g1, g2 ∈ JM1(K) the rules

(f1 � g1) ∨ (f2 � g2) = (f1 ∨ f2)� (g1 ∨ g2) and

(f1 � g1) ◦ (f2 � g2) = (f1 ◦ f2)� (g1 ◦ g2)
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apply.

Let K = (K,≤) be the semilattice with

K := {1, . . . , n} ·∪ {∞} and ≤ := idK ∪ (K × {∞}) ,

for some n ∈ N; that is, different elements are comparable only if one equals ∞.

In this case, Aut(K) consists of all bijective mappings f : L → L such that

f(∞) = ∞, and thus the group (Aut(K), ◦) is isomorphic to the symmetric group

S(K \ {∞}). Any subgroup (S, ◦) of (Aut(K), ◦) acts in this sense faithfully on the

set K \ {∞} = {1, . . . , n}.

Construction 5.74. Let L = (L,≤) be a semilattice and let K := (K,≤) be the

semilattice, where K = {1, . . . , n} ·∪ {∞}, n ∈ N and ≤ := idK ∪ (K × {∞}). Fur-

thermore, let (S, ◦) be a subgroup of (Aut(K), ◦) with f ∨g = k1 for all f, g ∈ S with

f 6= g, let S̄ := S ∪ {k1}, and let (R,∨, ◦) be a subsemiring of (JM1(L�K),∨, ◦)
with

∀ϕ ∈ R ∃f ∈ JM1(L) ∃g ∈ S̄ : ϕ = f � g , (5.9)

∀a ∈ L\{1L} ∀b ∈ L ∀g ∈ S̄ : fa,b � g ∈ R , (5.10)

∀ϕ ∈ R ∃a ∈ L\{1L} ∃b ∈ L ∃g ∈ S̄ : fa,b � g ≤ ϕ . (5.11)

If |K| = 2, then L�K ∼= L and (R,∨, ◦) corresponds to a subsemiring (S,∨, ◦) of

(JM1(L),∨, ◦) that fulfils (5.1) and (5.2). If L is no lattice and 1L is join-reducible,

then (R,∨, ◦) also possesses a finite idempotent irreducible R-semimodule that has

no neutral element and whose greatest element is join-reducible. In fact, (L,∨) is

such a semimodule (see Proposition 5.48).

If |L| = 2, then L � K ∼= K and (R,∨, ◦) belongs to a class of finite simple

semirings with absorbing greatest element, which are also known. These semi-

rings have been presented in the case of commutative semirings in [2] and for

not necessarily commutative semirings in [45]: Let (G, ·) be a finite group and

define V (G) := G ·∪ {∞}. Extend the multiplication of G to V (G) by the rule

x∞ =∞x =∞ for every x ∈ V (G) and define the addition on V (G) by x+ x = x

and x + y = ∞ for all x, y ∈ V (G) with x 6= y. Then (V (G),+, ·) is a finite simple

additively idempotent semiring with absorbing greatest element and (V (G),+) is

a finite irreducible idempotent semimodule, which has no neutral element and its

greatest element is join-reducible if |G| > 1.

Construction 5.74 is a new combination of those two types of semirings; it did not
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appear in the literature before. As shown in the next proposition, these semirings

are also simple.

Proposition 5.75. Let everything as in Construction 5.74. Then (R,∨, ◦) is a

finite simple additively idempotent semiring with absorbing greatest element.

Proof. (R,∨, ◦) is clearly a finite additively idempotent semiring. Its greatest ele-

ment is k1L�K
, which is obviously absorbing. Let ∼ be a congruence on (R,∨, ◦)

with ∼ 6= idR, i.e. there exist ϕ, γ ∈ R with ϕ 6= γ and ϕ ∼ γ. By (5.9), there exist

ϕ1, γ1 ∈ JM1(L), ϕ2, γ2 ∈ S̄ with ϕ = ϕ1 � ϕ2 and γ = γ1 � γ2. Without loss of

generality we can assume ϕ � γ. It follows that ϕ 6= k1L�K
. Choose λ ∈ R\{k1L�K

}
arbitrarily. We will show that λ ∼ k1L�K

holds. From this it follows that ∼= R×R
and therefore the simplicity.

Again there exist λ1 ∈ JM1(L), λ2 ∈ S̄ with λ = λ1�λ2. By (5.11), there exists

a ∈ L \ {1L}, b ∈ L and g ∈ S̄ such that fa,b � g ≤ λ1 � λ2. We have λ2 6= k1K
and thus λ2(y) 6= 1K for some y ∈ K. For all x ∈ L, [fa,b(x), g(y)] ≤ [λ1(x), λ2(y)]

follows, so that fa,b(x) ≤ λ1(x); hence fa,b ≤ λ1. Because of ϕ 6= k1L�K
, it holds

that ϕ1 6= k1L and thus there exists an x ∈ L with c := ϕ1(x) 6= 1L. It follows

that fc,b ◦ ϕ1 ◦ fa,x ∨ λ1 = fa,b ∨ λ1 = λ1. It also must hold that ϕ2, λ2 6= k1K , i.e.

ϕ2, λ2 ∈ S. Since (S, ◦) is a group, there exists a v ∈ S with ϕ2 ◦ v = λ2. We make

a distinction of cases.

Case 1: γ = k1L�K
. We have

(fc,b � idK) ◦ (ϕ1 � ϕ2) ◦ (fa,x � v) ∨ (λ1 � λ2)

= (fc,b ◦ ϕ1 ◦ fa,x ∨ λ1)� (idK ◦ϕ2 ◦ v ∨ λ2) = (λ1 � λ2) = λ

and

(fc,b � idK) ◦ (γ1 � γ2) ◦ (fa,x � v) ∨ (λ1 � λ2) = k1L�K
∨ (λ1 � λ2) = k1L�K

and because of ϕ ∼ γ it follows that λ ∼ k1L�K
.

Case 2: γ 6= k1L�K
and ϕ1 = γ1. It must hold that ϕ2 6= γ2 and it follows that

λ2 = ϕ2 ◦ v 6= γ2 ◦ v, i.e. λ2 ∨ γ2 ◦ v = k1K . As in the previous case one can show the

equality (fc,b� idK) ◦ (ϕ1�ϕ2) ◦ (fa,x� v)∨ (λ1� λ2) = λ. Additionally it holds in
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this case that

(fc,b � idK) ◦ (γ1 � γ2) ◦ (fa,x � v) ∨ (λ1 � λ2)

= (fc,b ◦ γ1 ◦ fa,x ∨ λ1)� (idK ◦γ2 ◦ v ∨ λ2)

= (fc,b ◦ γ1 ◦ fa,x ∨ λ1)� k1K = k1L�K

and we find again that λ ∼ k1L�K
.

Case 3: γ 6= k1L�K
and ϕ1 � γ1. There exists a y ∈ L with ϕ1(y) � γ1(y) =: d.

Furthermore, γ2 6= k1K holds, i.e. γ2 ∈ S. Consequently, there exists a w ∈ S with

γ2 ◦ w = λ2. It follows that

(fd,b � idK) ◦ (ϕ1 � ϕ2) ◦ (fa,y � w) ∨ (λ1 � λ2)

= (fd,b ◦ ϕ1 ◦ fa,y ∨ λ1)� (idK ◦ϕ2 ◦ w ∨ λ2)

= (k1L ∨ λ1)� (ϕ2 ◦ w ∨ λ2) = k1L�K
.

Moreover, we have

(fd,b � idK) ◦ (γ1 � γ2) ◦ (fa,y � w) ∨ (λ1 � λ2)

= (fd,b ◦ γ1 ◦ fa,y ∨ λ1)� (idK ◦γ2 ◦ w ∨ λ2)

= (fa,b ∨ λ1)� (λ2 ∨ λ2) = λ

and we find again that λ ∼ k1L�K
.

Case 4: γ 6= k1L�K
and ϕ1 � γ1. In this case there exists a z ∈ L with e :=

ϕ1(z) � γ1(z). Analogously to the previous case, one can show that (fe,b�idK)◦(ϕ1�

ϕ2)◦(fa,z�v)∨(λ1�λ2) = λ and (fe,b�idK)◦(γ1�γ2)◦(fa,z�v)∨(λ1�λ2) = k1L�K

holds, and we find again λ ∼ k1L�K
.

Proposition 5.76. Let everything as in Construction 5.74. Additionally, let

|S| = n > 1 or let L be no lattice and 1L join-reducible. Then (L�K,∨) is a

finite idempotent irreducible R-semimodule without neutral element and its greatest

element is join-reducible.

Proof. (L�K,∨) is clearly a finite idempotent R-semimodule without neutral ele-

ment and its greatest element is join-reducible. Moreover, it is an R-nonidentity

semimodule and it fulfils |R (L�K)| > 1.

Considering the action of the group (S, ◦) on the set K \ {∞} = {1, . . . , n}, it

follows from the conditions in Construction 5.74 that for every x ∈ {1, . . . , n} the
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orbit map S → {1, . . . , n}, g 7→ g(x) is injective; now, since |S| = n, this map is

even bijective.

Let (M,∨) be an R-subsemimodule of (L�K,∨) with |M | > 1, i.e. there exist

[a, b] ∈ M with [a, b] 6= A. Hence, a 6= 1L and b 6= 1K. Choose [c, d] ∈ L � K

arbitrarily. Since the orbit map g 7→ g(b) is bijective, it follows that there exits a

g ∈ S with g(b) = d. It follows that (fa,c � g)([a, b]) = [c, d]. Thus, M = R [a, b] =

L�K and (L�K,∨) is consequently sub-irreducible.

Let ∼ be a semimodule congruence on (L �K,∨) with ∼ 6= id, i.e. there exist

[a, b], [c, d] ∈ L � K with [a, b] ∼ [c, d] and [a, b] 6= [c, d]. Let e ∈ L, f ∈ K. We

will show that [e, f ] ∼ A holds. From this it follows that ∼ = L�K × L�K, i.e.

(L�K,∨) is quotient-irreducible.

If [a, b] = A, then [c, d] 6= A, i.e. d 6= 1K. Hence, there exists a g ∈ S with

g(d) = f and it follows that A = (fc,e � g)(A) ∼ (fc,e � g)([c, d]) = [e, f ]. The

case [c, d] = A works analogously. So from now on we can consider the case that

[a, b], [c, d] 6= A. If a = c, then b 6= d holds and it follows that [a, b] = [a, b] ∨ [a, b] ∼
[c, d]∨[a, b] = [a, 1K] = A. We find A ∼ [e, f ] as before. Now consider the case a � c.

There exists an h ∈ S with h(b) = f and it follows that [e, f ] = (fa,e � h)([a, b]) ∼
(fa,e � h)([c, d]) = [1L, h(d)] = A. The case a � c works analogously. Hence,

(L�K,∨) is irreducible.

Corollary 5.77. Let everything as in Construction 5.74. Additionally, let |S| > 1

or let L be no lattice and 1L join-reducible. Then (R,∨, ◦) is a finite simple additively

idempotent semiring with absorbing greatest element, which possesses a finite idem-

potent irreducible semimodule without neutral element and whose greatest element is

join-reducible.

We computed all finite simple additively idempotent semirings with cardinality

at most 10. Among these semirings, every finite simple additively idempotent semi-

rings with absorbing greatest element that possesses a finite idempotent irreducible

semimodule that has no neutral element and whose greatest element is join-reducible

is isomorphic to a semiring in Corollary 5.77. For this reason, we state the following

conjecture.

Conjecture 5.78. Let (R,∨, ◦) be a finite simple additively idempotent semiring

with absorbing greatest element that possesses a finite idempotent irreducible semi-

module without neutral element and whose greatest element is join-reducible. Then

(R,∨, ◦) is isomorphic to a semiring in Corollary 5.77.
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Despite that we could not complete the classification of finite simple semirings,

we believe that it is still possible to complete the classification by characterising finite

simple additively idempotent semirings in terms of join-morphisms of semilattices.

Indeed, it does not seem to be out of reach to prove Conjecture 5.71 by proving

Conjecture 5.67. Also a proof of Conjecture 5.78 may be attainable. Nevertheless,

other approaches that we did not consider yet might be more promising.
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[53] Z. Shmuely: The Structure of Galois Connections, Pacific Journal of Mathe-
matics, Vol. 54, No. 2, 1974, pp. 209–225

[54] R. Steinwandt, A. S. Corona: Cryptanalysis of a 2-Party Key Establishment
Based on a Semigroup Action Problem, Adv. Math. Commun., Vol. 5, No. 1,
2011, pp. 87–92

[55] Y. Tan: On invertible matrices over antirings, Linear Algebra Appl., Vol. 423,
2007, pp. 428–444

[56] H. S. Vandiver: Note on a simple type of algebra in which the cancellation law of
addition does not hold, Bull. Amer. Math. Soc., Vol 40, No. 4, 1934, pp. 914–920

[57] M. Ward: The Closure Operators of a Lattice, Ann. of Math., Vol. 43, No. 2,
1942, pp. 191–196

[58] J. H. M. Wedderburn: Boolean Linear Associative Algebra, Ann. of Math.,
Vol. 35, No. 1, 1934, pp. 185–194

[59] S. Yevtushenko: Computing and Visualizing Concept Lattices,
Ph.D thesis, Technische Universität Darmstadt, 2004, available at
http://tuprints.ulb.tu-darmstadt.de/

[60] C.-K. Zhao: Inverses of L-Fuzzy Matrices, Fuzzy Sets and Systems, Vol. 34,
No. 1, 1990, pp. 103–116
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0P, 5

1∗, 95

1P, 5

<, 5

A′, AI , 28

AR, 30

C(P), 9

C[M ], 17, 68

C[x], 17

E(L), 27

J(L), 6

K(P), 9

L�K, L�K, 101

L#, L#, 98

L+, L+, 98

L−, L−, 86

M(L), 6

RN , 70

Rϕ, 31

Ra, 70

S+, 86

Adj(P,Q), 27

Adj(K,L), 31

Aut(A), 3

Aut(P), 8

Bo(K,L), Bo(K), 30

CoAt(L), 94

End(A), 3

Ext(K), 29

Gal(P,Q), 27

Hom(A,B), 3

Int(K), 29

JM1(L), 84

JM(L,K), JM(L), 8

MatI×I(R), 11

Matn×n(R), 11

Min(P,≤), 81

MinBn, 37

MinEn, 37

MinRn, 37

Rd(L), 86

Res0(L), 84

Res1(L), 84

Res0,1(L), 84

Res(P,Q), Res(P), 8

Res(K,L), Res(K), 31

Sm(P,Q), 42

ΘL ×ΘK , 57

A/∼, 4

AP, 44
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Ld, 85

M2, 50

Pd, 5∨
,
∧

, 5

◦d, 33

[x], 3

[x]∼, 3

K(L), 29

K× L, 38

Kd, 40

B(K), 29

P(G×N), P(G×N), 32

≥, 5

inf, 5

∞, ∞M , ∞R, 72

ker(ϕ), 4

≤, 5

∇, 38

∼a, 73

sup, 5

B(K), 29

ϕP, 42

ϕR, ϕ+
R, 31

∨, ∧, 5

a.x, 15

ea,b, 12, 13

f � g, 101

f ◦d g, 85

f+, 8

fA, 2

fa,b, 83

g′, gI , 29

ka, 83

p(m), 17

ra,b, 80

xR, 30

x↓, x
↑, 75
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∨
-irreducible, 7∧
-irreducible, 7

F-algebra, 2

∨-morphism, 8

complete, 9

∨-semilattice, 5

∧-morphism, 9

complete, 9

∧-semilattice, 5

n-ary, 2

n-ary operation, 2

absorbing, 69

left, 68

right, 68

absorption laws, 7

addition, 10

adjunction, 26

tight, 27

algebra, 2

irreducible, 56

nontrivial, 56

quotient, 4

simple, 4

trivial, 56

arity, 2

attribute concept, 29

authentication, 14

automorphism

algebra, 3

order, 8

base set, 2

basic theorem on concept lattices, 29

biclosed relations, 35

bond, 30

dual, 38

bound

lower, 5

upper, 5

bounded, 48

canonical context, 29
centre, 16
chain, 48
clarified, 29
closure operator, 9
closure system, 9
coatom, 94
commutative, 10
complete ∨-morphism, 9
complete ∧-morphism, 9
complete join-irreducible, 7
complete join-morphism, 9
complete lattice, 6
complete meet-irreducible, 7
complete meet-morphism, 9
complete relation, 3
concept

attribute, 29
object, 29

concept lattice, 29
basic theorem, 29

confidentiality, 14
congruence, 3

non-total, 3
semimodule, 70
semiring, 11

connected, 57
constant, 71

data integrity, 14
decreasing, 9
dense, 12, 13
Diffie-Hellman key agreement, 14

extended, 16
Diffie-Hellman problem, 15
Diffie-Hellman semigroup action prob-

lem, 16
Diffie-Hellman with two sided matrix

semiring action, 17
direct decomposition, 56

maximal, 56
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direct product of formal contexts, 38
discrete logarithm problem, 15
distributive lattice, 7
distributive laws, 10
dual bond

regular, 39
dual bond, 38
dual formal context, 40
dual order, 5
dual order isomorphism, 8
dual ordered set, 5
duality principle for concept lattices,

40

embedding, 8
endomorphism, 3
epimorphism, 3
equality relation, 3
equivalence class, 3
extended Diffie-Hellman key agree-

ment, 16
extent, 29

faithful, 71
of smallest cardinality, 71

FCA, 28
finitary, 2
formal concept, 29
formal concept analysis, 28
formal context, 28

canonical, 29
clarified, 29
dual, 40
reduced, 29

fundamental operation, 2

Galois connection, 27
regular, 39
tight, 27

generalised permutation matrix, 61
Grail algorithm, 40
greatest element

ordered set, 5
semimodule, 72

semiring, 69

homomorphism, 3
natural, 4

homomorphism theorem, 4
horizontal sum, 48
horizontal sum

of chains, 48

idempotent, 9
identity-semimodule, 71
identity-subsemimodule, 71
incidence relation, 28
increasing, 9
infimum, 5
intent, 29
irreducible∨

-, 7∧
-, 7

algebra, 56
complete join, 7
complete meet, 7
join, 6
meet, 6
ordered set, 56
semimodule, 71

isomorphic
algebras, 3
formal contexts, 29
ordered sets, 8

isomorphism
algebra, 3
order, 8

isotone, 8

join, 5
join-irreducible, 6
join-morphism, 8

complete, 9
join-reducible, 6
join-semilattice, 5

kernel, 4
kernel operator, 9
kernel system, 9
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language, 2
lattice, 6

complete, 6
distributive, 7

least element, 5
left absorbing, 68
lower bound, 5
lower neighbour, 5

mapping
decreasing, 9
idempotent, 9
increasing, 9
isotone, 8
residuated, 8

matrix, 11
generalised permutation, 61
monomial, 61
product, 11
semiring, 11
sum, 11

maximal direct decomposition, 56
meet, 5
meet-irreducible, 6
meet-morphism, 9

complete, 9
meet-reducible, 6
meet-semilattice , 5
minimal, 81
monomial matrix, 61
morphism
∨-, 8
∧-, 9
join, 8
meet, 9

multiplication, 10

natural homomorphism, 4
neighbour

lower, 5
upper, 5

non-total congruence, 3
nonidentity-semimodule, 71
nonidentity-subsemimodule, 71

nontrivial
algebra, 56
ordered set, 56

object concept, 29
objects, 28
one, 11
operation, 2
operation symbols, 2
order, 5

dual, 5
order automorphism, 8
order embedding, 8
order isomorphism, 8

dual, 8
order relation, 5
ordered set, 5

bounded, 48
connected, 57
irreducible, 56
nontrivial, 56
totally, 48
trivial, 56

proper semiring, 10

quotient algebra, 4
quotient semimodule, 70
quotient-irreducible, 71

reduced, 29
regular dual bond, 39
regular Galois connection, 39
residual, 8
residuated, 8

tight, 27
right absorbing, 68

semigroup, 10
semigroup action, 15
semigroup action problem, 16
semilattice, 5
∨-, 5
∧-, 5
join, 5
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meet, 5
semimodule, 70

congruence, 70
constant, 71
faithful, 71
identity, 71
irreducible, 71
nonidentity, 71
quotient, 70
quotient-irreducible, 71
sub-irreducible, 71

semiring, 10
commutative, 10
proper, 10
simple, 12

simple, 4
algebra, 4
semiring, 12

smart triple, 42
standard context, 29
sub-irreducible, 71
subalgebra, 3
subdirect decomposition, 56
sublattice, 7
subsemimodule, 70

identity, 71
nonidentity, 71

sum, 57
supremum, 5
symmetric encryption scheme, 14

tight, 27
adjunction, 27
Galois connection, 27
residuated mapping, 27

totally ordered set, 48
trivial

algebra, 56
ordered set, 56

upper bound, 5
upper neighbour, 5

vertical sum, 21

zero, 11
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