
The Semigroup Action Problem in
Cryptography

Oliver Wilhelm Gnilke

UCD Student Number: 10278869

The thesis is submitted to University College Dublin in fulfillment of the requirements for
the degree of Doctor of Philosophy

School of Mathematical Sciences
Head of School: Prof. Gary McGuire

Principal Supervisor:
Dr. habil. Marcus Greferath

Doctoral Studies Panel:
Dr. Eimear Byrne

Prof. Gary McGuire

December 2014

Contents

1 Preliminaries 4
1.1 Semigroups, Semirings . 4
1.2 Semigroup Actions . 9

2 Public-Key Cryptography 12
2.1 Key Exchange Protocols . 12
2.2 Key-Exchange Protocols on Non-Commutative Structures 21
2.3 Other Applications of Public-Key Cryptography 23

2.3.1 Public-Key Encryption . 23
2.3.2 Digital Signatures . 24

2.4 Generic Attacks . 25
2.4.1 Shanks’s Algorithm . 26
2.4.2 Pollard’s Rho . 27

2.5 Pohlig-Hellman . 30
2.6 Quantum Algorithms . 33

3 Key-Exchange based on Semigroups 37
3.1 Semigroup Discrete Logarithm . 37
3.2 Key-Exchange Protocols based on Semigroup Actions 39
3.3 Comparison of Diffie-Hellman and Anshel-Anshel-Goldfeld 41
3.4 Monico-Maze-Rosenthal Protocol . 43

3.4.1 Statistical Analysis of the Monico-Maze-Rosenthal protocol 46
3.4.2 Steinwandt Suárez-Corona Attack 50

4 Attacks on Semigroup Actions 52
4.1 Brute-Force . 52
4.2 Time-Memory trade-offs for Semigroup Action Problems 53
4.3 Pohlig-Hellman Reductions . 57

5 Design of a Key-Exchange Protocol 67
5.1 A Non-Commutative Semigroup Action Key-Exchange Protocol 67
5.2 Semigroup Semirings . 69
5.3 Reductions of Semigroup Semirings . 70

ii

Für meinen Vater

Abstract

In this dissertation we address the use of semigroup actions for cryptographic purposes.
The necessary algebraic background on semigroup and semiring theory is provided and
several different key-exchange protocols based on semigroup actions presented, most promi-
nently a construction by Monico, Maze and Rosenthal based on the Diffie-Hellman key
exchange utilizing commutative semigroups. We introduce our own key-exchange protocol
based on an idea by Anshel, Anshel and Goldfeld that overcomes several shortcomings of
earlier constructions and no longer requires the semigroups to be commutative.
Several different time-memory trade-offs are presented and it is shown that semigroup
action problems can be secure when considering these types of attack only.
We then analyze the security of general semigroup action problems and develop a framework
for treating them similar to the Pohlig-Hellman reductions for the discrete logarithm
problem. It is shown that most semigroups are susceptible to these attacks and we
give several examples of how these reductions can be applied to specific semigroups.
Furthermore for any proper semigroup that is secure against these attacks it is implausible
that it has applications in cryptography. We conclude by proving that even our own
construction is not secure when considering these reductions.

iv

Declaration of Authorship

I hereby certify that the submitted work is my own work, was completed while registered
as a candidate for the degree stated on the Title Page, and I have not obtained a degree
elsewhere on the basis of the research presented in this submitted work

v

Acknowledgements

I want to thank my supervisor Dr. habil. Marcus Greferath for his confidence in me,
his support, and his friendship. Dr. Jens Zumbrägel has been an invaluable source of
knowledge and answered many of my questions with patience and diligence.
I am thankful for my mom’s constant support during my studies, all of this would not
have been possible without her.
To Ais, for countless lifts, all the encouraging conversations, and cakes, I am forever
indebted. My friends in Hamburg and elsewhere who have been there for me whenever
I needed them, thank you for making sure I never felt like I was too far away or too
long gone. Especially Markus and Mickey, who have provided all forms of support and
nourishment and Bober, whose friendship and encouragement mean a lot to me.
I am particularly grateful for the chance to visit Assistant Prof. Dr. Akiko Manada,
and Prof. Hiro Morita at the University of Electro-Communications in Tokyo, they have
introduced me to many interesting applications and have been most hospitable.
The Greferath/Rößing family has been most welcoming and host to many joyful evenings
that I am glad to have been part of. I will always remember the time Sara spent with our
group in Dublin with great fondness.
My gratitude belongs to my examination committee, Dr. Elisa Gorla, Dr. Eimear Byrne,
and Prof. Gary McGuire, for many insightful comments on this thesis. Prof. Richard
Stanley has been kind enough to answer my question on mathexchange, turning Open
Problem 77 into Lemma 77.
Andreas has been a great desk neighbor and group member and I am appreciative of his
help and encouragement during the early stages of my PhD. A sincere thanks goes to the
friendly staff at KC Peaches, foremost Katie, who have provided me with lunches that
have made me the envy of many at UCD and Paulina of Ariosa Coffee, who never failed
to provide a friendly smile and chat with a great latte.
Many thanks to @mrandmrsstevens for their @akillersandwich which have made so many
Friday afternoons so much better, best of luck with your endeavors.

Oliver W. Gnilke December 2014

vi

Introduction

Contemporary public-key cryptography relies mainly on two different computational
problems, the factorization of integers and the discrete logarithm in groups. Both have
withstood years of attempts of solving them efficiently, but nonetheless it seems advisable
to consider alternatives.
When choosing an instance of a cryptosystem, one has to balance between key sizes and
the extent of security it provides. Especially the discrete logarithm on algebraic varieties,
mainly elliptic curves, has proven to provide the best ratio between these two conflicting
aims. However in all of these settings generic attacks of computational effort in the order
of the square root of the size of the problem chosen exist. This means that the security
level, measured in bits, is at most half as big.
To remedy this fact, semigroup actions were suggested as a generalization of the ex-
ponentiation in groups. Rosenthal and his team [18] suggested a first protocol for a
key-exchange. Instead of working in (Zn, ·) they use the multiplicative semigroup of
matrices over a semiring. The square root attacks mentioned earlier rely on the linearity
of the exponentiation, i.e. ga · gb = ga+b , and on Zn having many units. In fact it is
strongly suggested to use groups of prime order for the discrete logarithm, in which case
one works in the field (Zp, ·) . Seeing as neither the linearity condition nor the invertibility
is given in general in the case of a semigroup action we see that the square root attacks
might be prevented.
This thesis aims to provide an extensive analysis of the security of semigroup action
problems against generic attacks. We start in chapter one by providing the reader with
the algebraic background on semigroups, semirings and semigroup actions needed to follow
the examples in the later chapters. Chapter two is an overview of public-key cryptography
with a focus on key-exchange protocols; we present the Diffie-Hellman protocol as well as
the Anshel-Anshel-Goldfeld protocol, and briefly explain other applications of public-key
cryptography. We then give a detailed account of the generic square root attacks on the
discrete logarithm problem before we consider Shor’s quantum algorithm that solves the
so-called Hidden Subgroup Problem.
We start chapter three by presenting a rather simple proposal of using semigroups for

1

a discrete logarithm problem and prove that this construction is most secure when it is
equivalent to the classical discrete logarithm. We then proceed to present the proposed
generalization of the Diffie-Hellman protocol by Rosenthal and his team using commuting
semigroups. With this generalization it is easy to describe the Ko-Lee protocol as a
Diffie-Hellman protocol for a particular group action and we recall a comparison of it
to the Anshel-Anshel-Goldfeld protocol for a very similar group action by Shpilrain and
Ushakov. We conclude chapter three with an account of the Monico-Maze-Rosenthal
protocol and a statistical analysis as well as a description of the attack by Steinwandt
and Suárez Corona.
Chapter four is exclusively concerned with attacks on semigroup action problems, we
start by re-evaluating the brute-force approach in this new setting and go on providing a
thorough analysis of possible time-memory trade-offs. We show that semigroup actions
can indeed be very resistant against these attacks if no additional structure is assumed
and only few units are present. The last section of chapter three covers a new line of
attack that we suggest for treating semigroup action problems. We present reductions that
transform the given problem to a new problem in smaller semigroups and work for general
semigroup actions. Our reductions are similar to the ideas of Pohlig and Hellman and
they actually depend on the semigroup having non-units. We show for several examples
how these reductions can be applied in practice.
Chapter five presents our own take on designing a key-exchange protocol. The attack by
Steinwandt and Suárez Corona revealed severe problems with the construction by Monico,
Maze and Rosenthal. We overcame these by using a non-commutative key-exchange
based on the protocol by Anshel, Anshel and Goldfeld. We introduce an extensive class
of semirings that could be used for our protocol. However, considering our reductions
from chapter four shows that our protocol will always be susceptible to these means of
attacks.

2

“All the king’s horses and all the king’s men,
Couldn’t put Humpty together again.”

Nursery Rhyme

3

1 Preliminaries

1.1 Semigroups, Semirings

We begin with the definition of one of the most basic structures in modern algebra.

Definition 1
A semigroup is a pair (S, ◦) , where S is a set and ◦ an associative binary operation
on S . If the set S contains an element 1S such that 1S ◦ s = s ◦ 1S = s for all s ∈ S
we call (S, ◦, 1S) a monoid and refer to the element 1S as the one or the identity. A
semigroup that contains an absorbing element 0S , i.e. 0S ◦ s = s ◦ 0S = 0S for all s ∈ S ,
is called a nulloid and 0S is referred to as the zero element.
For a monoid we define the subset S∗ := {s ∈ S : ∃s′ ∈ S, s ◦ s′ = s′ ◦ s = 1} to be the
subgroup of units in S . If S = S∗ then (S, ◦, 1S) is a group. If S is not a group we call
it a proper semigroup.
A morphism of semigroups is a map ϕ : (S, ◦S)→ (T, ◦T) such that

ϕ(s ◦S s′) = ϕ(s) ◦T ϕ(s′)

for all s, s′ ∈ S . If S and T are monoids with ones 1S and 1T then a morphism of
monoids is a semigroup morphism φ such that ϕ(1S) = 1T .

Example 2
i) (Z,+, 0) is a group.

ii) (Z, ·, 1, 0) is a monoid and a nulloid.

iii) (N,max, 1) is a monoid, but has no absorbing element.

iv) (Z≤m,max,m) is a nulloid, but it has no neutral element.

v) (Matn×n(R), ·, En×n, 0n×n) is a monoid and a nulloid.

It is common to omit the operation (especially in multiplicatively written semigroups) and
hence we will sometimes write st for s ◦ t . In finite monoids left invertibility implies right

4

Preliminaries

invertibility and vice-versa and we therefore only refer to invertible and non-invertible
elements.

Definition 3
Let (S, ◦) be a semigroup. A subset T ⊆ S is called a subsemigroup if T ◦ T ⊆ T , i.e.
if T is closed under the operation of S . A subsemigroup I ⊆ S is called a right ideal if
I ◦ S ⊆ I , which is reminiscent of the case of ideals of rings.

There is rich theory on semigroups, for more information on this topic the reader is
referred to [9].
An important extension of Definition 3 that will be of use later on is given by an additional
structure on the set.

Definition 4 (Partial/Total Order)
Given a set X a partial order ≤ on X is a binary relation on X such that the following
hold for all x, y, z ∈ X :

i) Reflexivity: x ≤ x

ii) Antisymmetry: x ≤ y and y ≤ x ⇒ x = y

iii) Transitivity: x ≤ y and y ≤ z ⇒ x ≤ z .

As usual for relations the infix notation x ≤ y is used for (x, y) ∈≤ . If additionally for
all x, y ∈ X it holds that x ≤ y or y ≤ x then ≤ is called a total order, sometimes
also referred to as linear order.

A convenient graphic representation of finite partial orders are Hasse diagrams. A
partial order ≤ on a set S can be used to describe a loop-free directed graph (S,E) with
vertex set S and edge set E := {(s, s′) : s < s′ and @t ∈ S, s < t < s′} . The Hasse
diagram is an illustration of this graph where for every edge (s, s′) ∈ E the direction
of edge is represented by s′ being higher on the vertical axis than s . Figure 1.1 shows
two examples of Hasse diagrams. On the left, the partial order is given by divisibility
a ≤ b :⇔ a|b and on the right it is set inclusion S ≤ T :⇔ S ⊆ T .

Definition 5 (Partially Ordered Semigroup)
Let (S, ◦) be a semigroup with a partial order ≤ on its elements. If ≤ is compatible
with the operation ◦ , meaning

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ≤ y ⇒ x ◦ z ≤ y ◦ z

5

Preliminaries

1

23

46

12

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Figure 1.1: Hasse diagrams

for all x, y, z ∈ S then (S, ◦,≤) is called a partially ordered semigroup, or a posemi-
group.

Example 6
i) (Z,+,≤) is a totally ordered group.

ii) (N,max,≤) is a posemigroup and ≤ is a total order.
We will see some more examples later on.

As in the case of groups we can extend the definition of a semigroup to include a second,
compatible operation.

Definition 7 (Semiring)
A semiring is a triple (S,+, ·) where S is a set and + and · are binary operations,
such that + is commutative, both (S,+) and (S, ·) are semigroups and the following
distributive laws hold for all x, y, z ∈ S

x · (y + z) = (x · y) + (x · z)
and (x+ y) · z = (x · z) + (y · z).

If (S, ·) is a monoid then (S,+, ·) is a semiring with one. If (S, ·) is a nulloid with zero
0S and it holds that 0S is neutral with respect to + , then (S,+, ·) is a semiring with
zero. We will only consider semirings with zero from now on.

The morphisms of semirings are the maps that are compatible with the operations.

Definition 8 (Morphism of Semirings)
Let (S,+S , ·S) and (R,+R, ·R) be semirings. A map f : S −→ R is a semiring morphism
iff it is a semigroup (or monoid) morphism between the additive semigroups (S,+S) and

6

Preliminaries

(R,+R) and the multiplicative semigroups (S, ·S) and (R, ·R) . A bijective morphism is
called an isomorphism.

Semirings, in contrast to other algebraic structures, allow for several distinct notions
of simplicity. Here we will define the absence of non-trivial congruence relations as
(congruence-) simple.

Definition 9
An equivalence relation ∼ on a semiring (R,+, ·) is called a congruence if it is compatible
with both operations,

x ∼ y ⇒ s+ x ∼ s+ y

x ∼ y ⇒ s · x ∼ s · y
x ∼ y ⇒ x · s ∼ y · s.

for all s, x, y ∈ S . A semiring S is called congruence simple (or just simple), if the
only congruences are the identity = and the all congruence R×R .

There is a one-to-one relation between congruences on a semiring S and kernels of semiring
morphisms f : S −→ R . A classification of finite (congruence-) simple semirings with
zero can be found in [34] and we will recall the theorem therein.

Theorem 10 Let (R,+, ·) be a finite semiring with zero which is not a ring and |R| > 2 .
Then the following are equivalent:

i) (R,+, ·) is congruence simple

ii) (R,+, ·) is isomorphic to a dense subsemiring of End(M) where (M,+) is a finite
commutative monoid such that m+m = m for all m ∈M .

A subsemiring (S,+, ◦) of endomorphisms of an idempotent commutative monoid (M,+)

is called dense if it contains the elements

ea,b(x) :=





0 if x+ a = a

b otherwise

for all a, b ∈M .

Example 11
We want to revisit some of the examples given in [35]

7

Preliminaries

i) The semiring R2,a := ({0, 1},max, 0) is congruence simple.

ii) The semiring R2,b := ({0, 1},max,min) is called the boolean semifield, since its
set of non-zero elements forms (trivially) a group with respect to multiplication.

iii) The ring R6 := ({0, 1, 2, 3, 4, 5},+, ·) defined by the following operation tables

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 1 1 1 5

2 2 1 2 1 2 5

3 3 1 1 3 3 5

4 4 1 2 3 4 5

5 5 5 5 5 5 5

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 2 0 0 5

3 0 3 4 3 4 3

4 0 4 4 0 0 3

5 0 5 2 5 2 5

is up to isomorphism the only congruence-simple semiring with 6 elements.

iv) For any semiring R the matrix ring Matn×n(R) is a semiring. If R is a semiring
with one then Matn×n(R) is congruence-simple iff R is congruence-simple, see [17].

The two semirings R2,a and R2,b are up to isomorphism the only congruence-simple
semirings of order 2 and therefore complete the classification in Theorem 10.

We recall an interesting corollary of the classification of congruence-simple semirings (see
Proposition 3.1 and Remark 2.1 in [34]).

Corollary 12 Every congruence-simple semiring S has idempotent addition and the
addition induces a partial order on S via

x ≤ y :⇔ x+ y = y.

If S is finite it follows that S is a lattice with join operation x ∨ y := x+ y and meet
operation x ∧ y :=

∑
z≤x,z≤y z .

In other words, if (S,+, ·) is a simple semiring then (S,+) is a commutative posemigroup
with respect to above partial order. For the semiring R6 in Example 11 the Hasse diagram
of the partial order is shown in Figure 1.2.

8

Preliminaries

0

4

2 3

1

5

Figure 1.2: Hasse diagram for R6

1.2 Semigroup Actions

Definition 13 (Semigroup Action)
Let S be a semigroup and X be a set. We say a mapping ϕ : S ×X → X, (s, x) 7→ s . x

is a semigroup action of S on X , or simply X is an S -set if it has the following flow
property ϕ (s, ϕ(t, x)) = ϕ(st, x) or equivalently s . (t . x) = (st) . x .
Equivalently a semigroup action is given by a morphism Φ : S → XX , s 7→ Φs : x 7→
s . x = ϕ(s, ·) , where XX is the semigroup of all mappings of X into itself. We will also
refer to the map Ψx := ϕ(·, x) as being induced by the element x .

Example 14
Given a group (G, ·) of order n we can define a semigroup action of (Zn, ·) on G by

ϕ : Zn ×G→ G

(z, g) 7→





gz := g · · · · · g︸ ︷︷ ︸
z times

for z 6= 0

eG for z = 0

.

Using Lagrange’s theorem one can prove that this is indeed a semigroup action.

Definition 15 (Orbit, Image)
For X an S -set. For x ∈ X and s ∈ S we define the following two sets:

a) S.x := im(Ψx) = {s . x : s ∈ S} , the orbit of x

b) s.X := im(Φs) = {s . x : x ∈ X} , the image of s .

9

Preliminaries

The second definition is unique to semigroup actions since in the case of S being a group
it follows trivially that the image of every element is X since s . (s−1 . x) = x for all x ∈ X .

The following Lemma shows another property that makes semigroup actions different from
group actions and has to be addressed when considering cryptographic uses of semigroup
actions.

Lemma 16 For every action of a proper finite monoid S on a set X , there exists x ∈ X
such that the induced map Ψx : S → X is non-injective.

Proof Since S is a proper finite monoid not every element is invertible. Let s ∈ S be
non-invertible then there exist u, v ∈ S with u 6= v such that us = vs . It then follows
that for any x ∈ X

Ψs . x(u) = u . (s . x) = v . (s . x) = Ψs . x(v).

Hence all y ∈ s .X give rise to non-injective maps Ψy . �

Example 17
A semigroup action we will consider later was first presented in [18]. Consider a semiring
(R,+, ·) and let (M,+, ·) := Matn×n(R) the ring of n× n matrices over R . Define the
opposite ring Mop := (M,+, ·op) where A ·op B := B · A for all A,B ∈ M . Then by
associativity of matrix multiplication it follows that

ϕ : (M×Mop)×M −→M
((A,B), X) 7−→ AXB

is a semigroup action.

A useful notion is presented in the following definition.

Definition 18
Given a semigroup action of S on X , every element x ∈ X naturally induces a left
congruence ∼x:=∼Ψx on the semigroup by

s ∼x t :⇔ s . x = t . x.

10

Preliminaries

Using this notation the size of the orbit of an element x ∈ X is given as the number of
congruence classes

|S . x| =
∣∣∣S�∼x

∣∣∣ .

Similar to free group actions we use the following convention

Definition 19
Let X be an S -set. We call x ∈ X free (with respect to the semigroup action) iff the
induced congruence is trivial, i.e. ∼x= id or equivalently

s . x = t . x =⇒ s = t.

This is equivalent to saying that the map Ψx is injective and the orbit of x is of maximal
size |S . x| = |S| .

Example 20
Consider the action of Zn on a group G of order n by exponentiation as in Example 14.
The free elements are the generators of the group, hence iff G is cyclic it has φ(n) different
free elements.

11

2 Public-Key Cryptography

2.1 Key Exchange Protocols

A fundamental principle of cryptography was formulated by Auguste Kerckhoffs in 1883
and is now known as Kerckhoffs’s principle [24]. It is more commonly known in a
reformulation by Claude Shannon

"The enemy knows the system"
which is also known as Shannon’s maxim. For security analysis of cryptosystems this
implies that the only unknown to an attacker is the key used. Systems designed with
this attacker model in mind tend to be drastically more secure, but rely on changing the
key on a regular basis. Organizations that wanted to employ a cryptographic system
were suddenly faced with a different problem of seemingly administrative nature, the
Key Distribution Problem. For almost a century the Achilles heel of any secured
communication was the need to equip both parties with the same secret key beforehand.
In practice this meant that military units, like submarines, had to be given the keys that
would be used months in advance. The keys were printed in key tables (sometimes also
referred to as codebooks) and a lot of effort was put into protecting them. Furthermore
in a system with n users there would need to be n(n−1)

2 different keys to allow every user
to securely communicate with every other user. For more information on the history of
key tables and Kerckhoffs’s contributions to cryptography see [10].

The first solution to the key distribution problem is often credited to Whitfield Diffie
and Martin Hellman (see Protocol 30) who presented their protocol in 1976. It should
be mentioned though that Ralph Merkle had developed another, less efficient, protocol
already in 1974. In 2002 it was disclosed that employees of the GCHQ had as early as
1973 come up with the Diffie Hellman protocol and the RSA encryption algorithm. In
this work we will not present the Merkle Puzzles or the RSA encryption scheme but solely
focus on the Diffie Hellman protocol and related mathematical problems.

It should be noted though that the solutions to the key distribution problem are not
a panacea but introduce other problems. Most significant is the lack of authentication.
When a secret key is used, every party is certain about who is at the other end of the line

12

Public-Key Cryptography

assuming the key had not been compromised. The key exchange protocols we want to
discuss do not provide any authentication and are therefore susceptible to man-in-the-
middle attacks. This detriment can be remedied by using a public-key infrastructure
with digital signatures and trusted third parties like certificate authorities. We will re-
strict our attention to the key-exchange protocols and ignore authentication issues for now.

We define a two-party key-exchange protocol as a sequence of calculations and transmis-
sions between two parties, most commonly referred to as Alice and Bob.

Definition 21 (Key-Exchange Protocol (KEP))
0.) Setup:

An initial handshake is performed, and protocol parameters specified.

1.) Generation of public/private keys:
Both parties generate ephemeral key pairs (kAs , k

A
p) and (kBs , k

B
p) respectively.

2.) Exchange of public keys:
The parties exchange their public keys kAp and kBp .

3.) Calculating the shared key:
Alice uses the received public key kBp and her own key pair to calculate a shared key
(shared secret) KA . Bob uses kAp and his own key pair to calculate KB .

Correctness of a protocol is given if KA = KB for all possible key pairs.

More complex definitions would be possible to allow for several communication and
computation steps between the parties involved or more than two parties to participate.
But we will restrict our attention to the simple case described in the definition above.
For simplicity we sometimes assume that the generated shared key KA = KB is a bit
sequence in {0, 1}∗ .

There are two different attacker models for our framework, but will only consider the
weaker type for the rest of this dissertation.

Definition 22 (Attacker Models)
i) Passive Attacker / Eavesdropper:

A passive attacker gathers all the information that is sent between the parties involved
in the protocol and tries to infer information about the shared secret. This attacker
has no means of interfering with the transmissions and can not alter or disrupt them.

13

Public-Key Cryptography

passive Attacker

Alice Insecure Channel Bob

Figure 2.1: passive attacker model

ii) Active Attacker / Man-in-the-Middle:
An active attacker not only sees all the transmissions between the parties but also
has the (sometimes limited) ability to alter or disrupt the information in transit or
inject his own information into the channel.

Alice active Attacker Bob

Figure 2.2: active attacker model

It is immediately clear that in the second case an attacker could even prevent the parties
from communicating altogether. Usually one assumes that the attacker instead will try
to hide his presence and convince the communicating parties that they have established a
secure shared secret. This will enable the attacker to listen in on the conversation.
Protocols that consider this case are mostly concerned with the detection of modifications
to the transmissions and therefore the detection of an active attacker. This is usually
achieved by adding some form of authentication to the messages sent.

The security of a KEP against eavesdroppers is formally defined using the following
experiment (see [12] for more details).

Definition 23 (KEP indistinguishability experiment)
Let A be a probabilistic polynomial-time (PPT) algorithm that takes as input the
transcript generated by one run of a KEP and an element from the space of possible
shared secrets. We then define the following experiment

1. Two parties perform a KEP as described above and generate a shared secret K .
The transcript of transmissions (step 2.) along with the protocol specifics and the
security parameter n (step 0.) are recorded.

2. With equal probabilities the adversary A is provided with the transcript and the
shared secret K or with the transcript and a random element from the space of

14

Public-Key Cryptography

possible shared secrets.

3. We say A succeeded if it can correctly decide whether the element it received with
the transcript is the shared secret or not.

We see that an algorithm A that randomly guesses will succeed with probability 1
2 but

can not be considered a threat to the KEP. In fact an algorithm that succeeds with just
little higher probability than 1

2 should still not be considered a break of the KEP. The
next definition gives the term ’just little’ a formal framework.

Definition 24 (Negligible Function)
A function negl : N −→ R+

0 is called negligible if for every positive polynomial p ∈ N[x]

there exists N ∈ N such that for all integers n > N it holds that

negl(n) <
1

p(n)

An examples of a negligible functions is 2−n , which corresponds to the probability of
randomly guessing the right preimage of a injective function f : {0, 1}n → {0, 1}∗ .
This now allows for a formal definition of security of a KEP against eavesdroppers.

Definition 25 (Security of a KEP)
A KEP is considered secure in the presence of a passive adversary if for every probabilistic
polynomial-time algorithm A there exists a negligible function negl(n) such that

Pr[A succeeds] ≤ 1

2
+ negl(n)

where the probability is taken uniformly over all possible choices in the execution of the
protocol, and n is the security parameter.

This definition is a very strong requirement on the KEP since an attacker is only asked to
decide between two possible shared secrets. In an application an adversary actually would
need to recover the shared secret K by himself from the transcript of the communications
to compromise the security. In general this can be achieved in two different ways.

1. An adversary might be able to deduce the shared key K directly from the public
keys that he overheard without ever getting hold of on of the secret keys.

2. The adversary could recover one of the secret keys k∗s and then calculate K the
same way the original holder of k∗s does.

15

Public-Key Cryptography

The relation between these two problems depends on the protocol used and is an active
topic of research.

In most KEPs, key pairs are generated by uniformly at random choosing a secret key ks

and then using a function f to calculate the corresponding public key kp := f(ks) as
a function1 of ks . Recovering the secret key from the public key is then equivalent to
finding preimages for f . This problem motivates one of the most fundamental concepts
in modern cryptography (we loosely follow the definitions given in [12]).

Definition 26 (One-Way function)
A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if the following two conditions
hold:

1.) There exists a polynomial-time algorithm to compute f on arbitrary values x .

2.) For all probabilistic polynomial-time algorithms A the probability of inverting f is
negligible in the length n of the input x ∈ {0, 1}n

Pr [f (A(f(x))) = f(x)] ≤ negl(n).

It would be desirable for the function that maps the private keys to the public keys to be
one-way. But proving that any particular function is one-way appears difficult so far. In
fact the existence of a one-way function would imply that P 6= NP [33, Theorem 6.6],
therefore solving one of the Millennium Problems.
In practice one works with functions that are assumed to be one-way and have so far
resisted attempts to find a polynomial algorithm that retrieves preimages. We will in the
following discuss a well known candidate for a one-way function that is widely used in
practice.

At the foundation of many modern cryptographic protocols stands an implementation of
the following problem

Definition 27 (Discrete Logarithm Problem)
For any cyclic group G of order n and generator b of G there is a natural isomorphism

1In contrast, identity based encryption chooses the public key and then calculates the corresponding
secret key.

16

Public-Key Cryptography

from (Zn,+) into G ,

εb : Zn −→ G

z 7−→ bz.

Its inverse logb : G→ Zn is called the discrete logarithm with respect to basis b . The
discrete logarithm problem is the explicit calculation of values of logb(g) for g ∈ G .

Remark 28
To be precise, we would have to consider a class of discrete logarithm problems in groups
of sizes n . This class would be a candidate for a one-way function since we expect the
effort of an attacker to grow faster than polynomial in the size of the group. For the sake
of legibility and simplicity we will restrict our considerations to one group instead.

A purely mathematical view on this problem does not reveal any serious problem: the
solution always exists and is uniquely defined. But for an evaluation of its cryptographic
hardness, computational complexity questions have to be considered. We will therefore
discuss several algorithms and compare them in terms of memory and computational re-
quirements. A few examples show that the representation of the group G is of paramount
importance.

Example 29
i) For G = Zn consider the isomorphism εb(z) := z · b where gcd(b, n) = 1 , hence b is

a generator of (Zn,+) . It is obvious that logb(x) = x · b−1 where b−1 is the inverse
of b in Z∗n and is easily calculated by the Euclidean algorithm.

ii) Let G = F∗q and b ∈ G an element of order n . For εb(z) := bz the associated DLP
can be computationally hard and some instances of this problem are used in modern
cryptographic applications, see [14].

iii) Let E(Fq) be the group of points on an elliptic curve, G = 〈b〉 a subgroup generated
by an element b . Then the associated DLP to εb(z) := z · b is believed to be
computationally hard for suitably chosen curves 2.

Using this candidate for a one-way function we are ready to describe the Diffie-Hellman
key exchange protocol. It has several advantages over the first KEP to achieve secure

2A good resource on secure curves and related implementation issues is [3]

17

Public-Key Cryptography

transmission of a key over an insecure channel, the so called Merkle Puzzles. While in the
construction of Merkle [19] a multitude of possible keys have to be transmitted and the
effort of the attacker lies in the order of the square of the effort of the legitimate parties
the Diffie-Hellman protocol has far lower transmission cost and provides exponentially
higher security3.

Protocol 30 (Diffie-Hellman key exchange protocol (DHKEP))
0.) Setup:

The protocol parameters are negotiated. These include the group G of order n with
generator g .

1.) Generation of public/private keys:
Both parties, Alice and Bob, choose secret elements a, b ∈ Zn respectively as their
secret keys and calculate their public keys as

pA = ga

pB = gb.

2.) Exchange of public keys:
Alice and Bob exchange their public keys pA and pB .

3.) Calculating the shared key:
Alice, upon receiving pB from Bob, calculates

KA := paB

Bob similarly computes
KB := pbA.

Correctness follows from commutativity in Zn , since KA = (gb)a = gab = (ga)b = KB .

An attacker aims to gather information on the shared secret KA = KB . Several problems
related to this task have been studied and names have been coined in the standard
literature. A direct retrieval of the shared secret from the intercepted public keys relates
to the following problem.

3Here, we assume that the chosen instance of the protocol is secure, i.e. an attacker has at most a
square root attack at her disposal.

18

Public-Key Cryptography

Alice Channel / Eve Bob

chooses private key public base element chooses private key
a ∈ Zn g ∈ G b ∈ Zn

calculates calculates
(gb)a (ga)b

ga

gb

Figure 2.3: Protocol 30

Definition 31 (Computational Diffie-Hellman Problem (CDHP))
Given a triple of elements (g, ga, gb) of G compute gab .

Recovering the secret key of one of the parties is equivalent to the DLP described in
Definition 27. As seen in Example 29, the hardness of the DLP depends heavily on the
the choice of the group G . A collection of groups that are used in practice can be found
in [14] and a good overview of elliptic curve standards is given in [3].
Another problem that relates to Definition 25, where security is defined as a form of
indistinguishability, is the following.

Definition 32 (Decision Diffie-Hellman Problem (DDHP))
We call a tuple (g, ga, gb, h) ∈ G4 a valid Diffie-Hellman tuple if h = gab . Given a tuple
of group elements (g, ga, gb, h) that is with probability 1

2 a valid Diffie-Hellman tuple
and in all other cases h is chosen uniformly random from G , decide whether the tuple is
valid.

This leads to the formal definition of DDHP hardness.

Definition 33 (DDHPsecurity)
A discrete logarithm problem is considered DDHP secure if for all probabilistic polynomial-
time algorithms A that attempt to solve the DDHP , there exists a negligible function
negl(n) in the security parameter n such that

Pr[A succeeds] ≤ 1

2
+ negl(n)

where the probability is taken over all possible choices of triples for the DDHP as described
above.

19

Public-Key Cryptography

The hardness relations between these problems can be described using what are called
Turing reductions.

Definition 34 (Turing Reduction)
Let X and Y be two computational problems. We say there is a Turing reduction from
X to Y or equivalently XαTY if there exists a polynomial time algorithm A that solves
X by using a theoretical algorithm B that solves Y .

The algorithm B is often termed an oracle for Y . Given a reduction XαTY it follows
that if there exists a polynomial time algorithm that solves the problem Y then the
problem X can also be solved in polynomial time. In other words the problem X is at
most as hard as the problem Y .

Proposition 35 There exist Turing reductions DDHP αT CDHP αT DLP.

Proof Given an algorithm C that solves the CDHP , i.e. C(g, ga, gb) = gab we can
construct an algorithm D that solves the DDHP . Given an instance (g, ga, gb, h) of the
DDHP the algorithm D calls the subroutine C on (g, ga, gb) and receives gab as a result.
If h = gab then D is certain that the triple is valid, otherwise it is not valid.
Given an algorithm L that solves the DLP , i.e. L(g, gx) = logg(g

x) = x we can design
an algorithm C that solves the CDHP . Given an instance (g, ga, gb) of the CDHP the
algorithm C calls L once on (g, ga) obtaining a and then calculates (gb)a = gab and
hence solves the CDHP . �

In [16], the authors take a closer look at the relation between the CDHP and the DLP .
They can show that CDHP is equivalent to the DLP given some conditions on the order
of the group G and the existence of certain auxiliary groups.

The DDHP is less often used to estimate the security of a given instance of the Diffie-
Hellman KEP, in fact there are groups in which the DDHP is solvable while the CDHP

and the DLP are still considered hard. In Z∗p it is easy to decide whether a given element
is a quadratic residue, and the shared secret K is a quadratic residue iff at least one of
the public keys pA, pB is. Hence an adversary can certainly distinguish K from a random
bit string in half the cases. This situation can be remedied by working in a prime order
subgroup of Z∗p or by working in the subgroup of quadratic residues.
Similarly for elliptic curves, pairings can be used to solve the DDHP by identifying many
non-valid tuples.

20

Public-Key Cryptography

2.2 Key-Exchange Protocols on Non-Commutative
Structures

The Anshel-Anshel-Goldfeld protocol is a two party key-exchange protocol and instead of
commutativity as in the case of the Diffie-Hellman protocol it requires linearity of certain
functions. We will see how associative algebras naturally lend themselves to be used in
such a protocol later on.

In their paper [1] the authors introduce a protocol based on parametrized morphisms.
Assume we have two additive (semi-) groups S, T and three maps β : S × S → T and
γ1,2 : S × T → T such that the following equations hold.

a) β(s, t+ t′) = β(s, t) + β(s, t′)

b) γ1(s, β(s′, s)) = γ2(s′, β(s, s′))

Unlike the Diffie-Hellman protocol the Anshel-Anshel-Goldfeld protocol is not entirely
symmetric. The two parties need to be cast into two different roles. We assume from now
on that the first party, Alice, has role "1" and Bob has role "2".

Protocol 36 (Anshel-Anshel-Goldfeld key-exchange protocol)
0.) Setup:

The two parties agree on the protocol specifics, these include the (semi-)group S , a
generating set (si) and the maps β, γ1,2 .

1.) Generation of public/private keys:
Both parties choose secret keys sA =

∑
J sj and sB =

∑
K sk as sums of the

generating elements. Their public keys are the maps pA = β(sA, ·) and pB =

β(sB, ·) represented as the images of the generators, i.e. pA = (β(sA, si))I and
pB = (β(sB, si))I .

2.) Exchange of public keys:
Alice and Bob exchange the public keys pA and pB .

3.) Calculating the shared key:
Upon receiving the morphism pB from Bob, Alice uses her knowledge of the decomposi-
tion of sA into generators to calculate

∑
J β(sB, sj) = β(sB,

∑
J sj) = β(sB, sA) . Bob

similarly calculates
∑

K β(sA, sk) = β(sA,
∑

K sk) = β(sA, sB) . Alice now calculates
the shared secret as kA = γ1(sA, β(sB, sA)) and Bob uses kB = γ2(sB, β(sA, sB)) .
Property b guarantees correctness of the protocol.

21

Public-Key Cryptography

Alice Channel / Eve Bob

chooses private key chooses private key
sA ∈ S sB ∈ S

exchanging morphisms

calculates calculates
γ1(sA, β(sB, sA)) γ2(sB, β(sA, sB))

β(sA, ·)
β(sB, ·)

Figure 2.4: Protocol 36

In their paper the authors suggest using inner automorphisms of a multiplicative group
as the parametrized morphisms, i.e.

β(s, x) := s−1xs.

The functions γ1,2 are defined as

γ1(a, b) := a−1b

γ2(a, b) := b−1a.

It then follows that

γ1(a, β(b, a)) = γ1(a, b−1ab)

= a−1(b−1ab)

= (a−1b−1a)b

= (a−1ba)−1b

= γ2(b, a−1ba) = γ2(b, β(a, b)),

as desired.
Several groups have been suggested as a base structure for this protocol. Most prominently
were braid groups since they possess an easily calculable normal form and the associated
conjugation problem was thought to be hard enough. The braid group on n strands, Bn ,

22

Public-Key Cryptography

can be defined as

Bn :=

〈
σ1, . . . , σn−1

∣∣∣∣∣
σiσj= σjσi if |i− j| ≥ 2

σiσjσi= σjσiσj if |i− j| = 1

〉

A good survey on cryptography using braid groups can be found in [4].

2.3 Other Applications of Public-Key Cryptography

Public-Key Cryptography or Asymmetric Cryptography has several other applications of
which we will mention the two most important.

2.3.1 Public-Key Encryption

The key-exchange protocols described above establish a shared secret between two parties
over a public channel, but this shared secret does not carry any information. Public-key
encryption allows parties to securely send messages in one direction.

Given a key-exchange protocol and a symmetric encryption function one can build a
public-key encryption scheme. We will present the Elgamal encryption scheme [6] which
is based on the Diffie-Hellman KEP. We assume that the message m = (mi)1≤i≤n has
been encoded as a list of group elements mi ∈ G .

Protocol 37 (Elgamal Encryption)
The public parameters include a cyclic group G of order n together with a generator g .

i.) Alice generates a static key pair by uniformly at random choosing the secret key
a ∈ Zn and calculating the public key ga ∈ G . She publishes her public key ga .

ii.) For every mi Bob uniformly at random chooses an element bi ∈ Zn and calculates
the pair (gbi ,mi · (ga)bi) using Alice’s public key.

iii.) Upon receiving a pair (gbi ,mi · gabi) , Alice uses her secret key to calculate (gbi)a

and multiplies the second component by its inverse, hence attaining mi .

For a passive attacker the task of retrieving a message from the transmissions of this
encryption scheme is equivalent to the CDHP . The scheme is therefore secure iff the
CDHP in the group G is hard. Furthermore if the DDHP is hard in the group the
Elgamal encryption achieves semantic security, meaning that the cipher-texts do not leak

23

Public-Key Cryptography

Alice Channel / Eve Bob

chooses private key public base element message
a ∈ Zn g ∈ G m = (mi) ∈ Gn

chooses uniformly random
bi ∈ Zn

...

calculates
(mig

abi)(gbi)−a = mi

ga

(gb1 ,m1g
ab1)

(gbn ,mng
abn)

Figure 2.5: Protocol 37

information about the message. An obvious disadvantage of the Elgamal encryption
scheme, apart from the computational complexity, is the transmission requirement of
twice the message size.

2.3.2 Digital Signatures

Another interesting application of asymmetric cryptography are digital signatures that
enable someone who has access to some public key to determine whether a message was
signed by the holder of the corresponding secret key. A necessary prerequisite for these
schemes are hash functions H : {0, 1}∗ → Zn that map bit strings or arbitrary length to
elements in Zn . For the security of the digital signature it is crucial that H is preimage
and collision resistant, for more information on hash functions see [12]. We also assume
that group elements have a unique representation as bit strings.

In the following we assume that Alice holds a message m ∈ {0, 1}∗ that she wants to sign
and send to Bob, who then verifies the signature.

Protocol 38 (Schnorr Signature Scheme)
The public parameters include a cyclic group G of order n together with a generator g
and a hash function H .

i.) Alice generates a key pair by uniformly at random choosing the secret key a ∈ Zn
and calculating the public key pk := ga ∈ G . She publishes her public key pk .

24

Public-Key Cryptography

ii.) Alice chooses uniformly at random an element r ∈ Zn and calculates e := H(m‖gr)
and s := r − ae , where m‖gr is the concatenation of the bit strings.

iii.) Alice sends Bob the message m together with the signature (e, s) .

iv.) Upon receiving the message and the signature Bob verifies that e = H(m‖(gspek)) .

Alice Channel / Eve Bob

chooses private key public base element
a ∈ Zn g ∈ G

chooses r ∈ Zn
calculates e := H(m‖gr)

verifies
e = H(m‖(gr−aepek))

pk := ga

(m, e, r − ae)

Figure 2.6: Protocol 38

It can be proven that this signature scheme is secure if the hash function H is secure
(assumed to be a random oracle) and if the DLP in the group G is hard.

2.4 Generic Attacks

In this section we would like to present several (generic) algorithms that treat the DLP .
We will not discuss specialized algorithms for the DLP in finite fields like index-calculus
or number-field sieve attacks since these rely heavily on special properties of finite fields
and therefore are unlikely to extend to the SAP .

The DLP on a cyclic group G can be interpreted as a SAP with the semigroup (Zn, ·)
acting on the set G . But it comes with additional properties, some of which are exploited
in algorithms described below.
Most prominent is the following ’linearity’ of the semigroup action of Zn on a cyclic
group.

ga · gb = ga+b

25

Public-Key Cryptography

As a baseline, we will shortly discuss the expected computational effort a brute-force
attack on the DLP would require. Given a DLP x = logg h the brute force approach
would consist of testing elements z ∈ Zn by calculating gz till it equals h and x ∈ Zn is
found. We assume the choices are made uniformly at random and independently. Then
the probability that the brute-force attack will succeed at the t-th step is

(
1− 1

n

)t−1 1
n .

Therefore the expected number of tests can be calculated as

E[t] =
1

n

∞∑

t=1

t

(
1− 1

n

)t−1

=
1

n

1

(1− (1− 1
n))2

= n.

If we assume that the choices are not independent but all distinct then we see that after
testing n

2 elements we have a probability of 1
2 that x was among the tested elements. A

brute force attempt therefore would require O(n) operations.

2.4.1 Shanks’s Algorithm

The first attack on the DLP was presented by Shanks [28] in 1969. Shanks’s algorithm is
sometimes referred to as “baby-step giant-step” and yields in its essence a time-memory
trade-off. A precomputed list of group elements and indices is used to reduce the
computation time.

Algorithm 39
Given a DLP logg h in a group G of order n the algorithm proceeds in two stages.

Precalculation:
Let s := b√nc , a list L :=

(
(gis, i) : 0 ≤ i ≤ d√ne

)
of so called giant-steps is generated.

Solving the DLP:
The elements hgj = gx+j are successively calculated for 0 ≤ j ≤ b√nc and compared to
the first entries in elements in L . When a collision with the list occurs a solution can be
calculated since

gx+j = gsi ⇒ x = si− j.

Generating the list L of giant-steps uses d√ne exponentiations. The algorithm is
deterministic and terminates successfully after at most b√nc baby-steps. Therefore,
even when considering sorting the list and lookups, we have a computational effort
of O(

√
n · polylog(n)) and a memory requirement of O(

√
n) , where polylog(n) is a

polynomial in log(n) .

26

Public-Key Cryptography

g0

g s

g2s

g3s

gd
√
nes

g (i−1)s

hhg j

g is

Figure 2.7: Shanks’s baby-step giant-step

2.4.2 Pollard’s Rho

John Pollard described a probabilistic factoring algorithm in a 1975 paper [26]. In 1978
he published an adaption of his algorithm to the DLP [27]. It uses ideas of Floyd’s cycle
finding algorithm to minimize storage requirements.
It is optimal in the generic case since it asymptotically achieves the lower bound of Ω(

√
p) .

We will begin by describing the cycle finding problem and Floyd’s algorithm for solving it.

Definition 40 (Cycle finding)
Given a function F : S → S on a finite set S and an element s ∈ S find minimal r, p ∈ N
such that F p(s) = F p+r(s) .

We refer to p as the preperiod and r as the period. Algorithms that find the period and
the preperiod are called cycle finding algorithms, since they find the length of the cycle
contained in the path starting in s in the directed graph induced by the function F on
the vertices S .
We present Floyd’s algorithm since Pollard’s rho is based on similar ideas. The algorithm
first searches for collisions of the type

F i(s) = F 2i(s)

and then determines the preperiod and the period.

27

Public-Key Cryptography

s F (s) F 2(s) F p(s)

F p+1(s)

F p+2(s)

F p+r−1(s)

Figure 2.8: Period and Preperiod of a function F

Algorithm 41 (Floyd’s Cycle finding)
This algorithm proceeds in three distinct stages.

I: A multiple of the period is calculated

i) Set i := 1 , a := s , b := F (s) .

ii) While a 6= b set i := i+ 1 and a := F (a) = F i(s) and b := F 2(b) = F 2i(s) .

iii) If a = b then i is a multiple of r .

II: The preperiod is determined

i) Set p := 0 , c := s , d := a = F i(s) .

ii) While c 6= d set p := p+ 1 and c := F (c) = F p(s) and d := F (d) = F i+p(s) .

iii) When c = d then p is the preperiod.

III: The period is exactly determined

i) Set r := 1 , e := c = F p(s) , f := F (c) = F p+r(s) .

ii) While e 6= f set r := r + 1 and f := F (f) = F p+r(s) .

iii) When e = f then r is the period.

This algorithm is very memory efficient and only uses two variables at any given state
apart from the two values that are returned, it uses O(p+ r) operations.

It was shown in [7] that if F is chosen uniformly random from the set of all mappings
from a set of size n onto itself and for uniformly random chosen starting point s the
expected value for the preperiod p and the period r both can be estimated by

√
πn
8 .

The first i such that F i(s) = F 2i(s) is called the epact and it is easily checked that

28

Public-Key Cryptography

i = dpr er is the epact when s is not a fixpoint of F . Pollard states that the expected
value for the epact can be estimated by

E(epact) ≈ 1

12

√
π5n

2
. (2.1)

Now given a DLP logg h on a group G := 〈g〉 of order n , consider a function f : G→ G

defined by choosing a partition of G = G1 tG2 tG3 into roughly equally sized sets.

f(j) =





jg, for j ∈ G1

j2, for j ∈ G2

jh, for j ∈ G3.

For the analysis of the running time we assume that the epact of f is indeed of the
magnitude given in (2.1). Should a particular f not have sufficiently small epact for a
given s then it can easily be altered by choosing a different partition of G .

The function is chosen such that it can be extended to a special subset X ⊂ G×Zn×Zn
where (j, a, b) ∈ X ⇔ j = gahb . We define a function F on X by

F ((j, a, b)) =





(jg, a+ 1, b), for j ∈ G1

(j2, 2a, 2b), for j ∈ G2

(jh, a, b+ 1), for j ∈ G3

.

Every element f ∈ G has a unique representation f = ge where e ∈ Zn as a power of g .
But if we allow for representations of the form f = gahb = ga+bx then we see that every
element has n different representations. If we obtain two different representations of the
same element, say

gahb = ga
′
hb
′

(2.2)

with (a, b) 6= (a′, b′) then it follows that

g
a−a′
b′−b = h

therefore

x =
a− a′
b′ − b

29

Public-Key Cryptography

where calculations in the exponent are done in Zn , provided b′ − b ∈ Z∗n . Let ϕ denote
Euler’s phi function, then the element b′ − b is invertible with probability ϕ(n)

n−1 (since we
can exclude the case where b = b′). It should be noted that in the case that is of most
interest, when n is a prime, the probability is 1 and every collision leads to a solution of
the DLP.

We are now ready to describe Pollard’s Rho algorithm.

Algorithm 42 (Pollard’s Rho)
Given a DLP logg h in a group G of order n choose random a, b ∈ Zn , calculate j = gahb

and let s = (j, a, b) ∈ X . Calculate F i(s) = (f i(j), ai, bi) and F 2i(s) = (f2i(j), a2i, b2i)

for increasing values of i till the epact e of f for starting value j is reached, i.e.
fe(j) = f2e(j) . If b2i − bi is invertible in Zn then

logg h =
ai − a2i

b2i − bi
.

If the algorithm fails because b2i − bi is not invertible then it can be restarted with a
different partition of G and different values for a and b . The algorithm has a minimal
memory requirement of only two elements of the set X . Using the assumption that the
epact for f is as stated in (2.1), we expect a collision after O(

√
n) steps, comparable to

Shank’s algorithm. With high probability, F will have a different epact from f and this
will lead to two different representations of the same element as in (2.2). A drawback
compared to Shank’s algorithm is that the algorithm no longer is deterministic and might
not succeed at all.

2.5 Pohlig-Hellman

Only two years after the seminal paper by Diffie and Hellman [5], Pohlig and Hellman
published an attack [25] on the DLP that is very powerful for groups of smooth order n .

Definition 43 (B -smooth)
Let B ∈ N then a number n ∈ N is said to be B -smooth if for its prime factor
decomposition

n =

k∏

i=1

peii

it holds that pi ≤ B for all 1 ≤ i ≤ k . We call a number smooth if it is B -smooth for
B � n .

30

Public-Key Cryptography

We will first describe the attack on a toy example and then give a general description.

Example 44
Find x ∈ Z28 such that 2x = 18 in Z∗29 , i.e. compute log2(18) in Z29 .
We split this into smaller problems to obtain partial information about x . The base
element 2 is a generator for the multiplicative group of Z29 and therefore has order 28 .
The Chinese remainder theorem (CRT) describes an isomorphism

ϕ : Z28 → Z7 × Z4

z 7→ (z7, z4)

where zi = z mod i

and we identify x ∈ Z28 with its image x = (x7, x4) . It is then obvious that

(x7, x4) · (1, 0) = x · 8 = (x7, 0)

where the factor 8 can easily calculated by applying ϕ−1 to (1, 0) . Using the commuta-
tivity of the exponents we see that

2x = 18 ⇒ (2x)8 = 24x = 16 = 188.

This new DLP log24(16) is much simpler since 24 has order 7 . In the worst case 6

different exponents have to be tried to determine that 244 ≡ 16 mod 29 , this is equivalent
to 8 · x ≡ 8 · 4 mod 28 and hence x ≡ 4 mod 7 . Similarly it can be determined after at
most three tries that 173 ≡ 12 mod 29 and therefore x ≡ 3 mod 4 .

Z7

Z28

Z4 Z2

8·

21·
2·

28 ≡7 24

2

221 ≡4 17 172 ≡2 28

x ≡7 4

x ≡28 11

x ≡4 3 x ≡2 1

188 ≡7 16

18

1821 ≡4 12 122 ≡2 28

Figure 2.9: Pohlig-Hellman Example

31

Public-Key Cryptography

For general Zn with n = a · b and gcd(a, b) = 1 it seems as if the attack is based on the
CRT or the isomorphism Zn ∼= Za×Zb . But this explanation falls short when considering
the reduction from Z4 to Z2 in the above example. This reduction is nicely explained by
using a p-adic representation of the exponent, but we would like to introduce a different
more general explanation that will be easier to extend to semigroup actions.
The following Lemma provides the basis for the Pohlig-Hellman attack.

Lemma 45 Let n ∈ N and 0 < m < n such that gcd(m,n) = h. Then the following
hold:

i) The map µm(z) = mz is a group morphism on (Zn,+) .

ii) im(µm) ∼= Zn
h
.

iii) ker(µm) ∼= Zh .

If n is not prime then we can find elements m such that the gcd(m,n) > 1 and therefore
| im(µm)| < |Zn| . Given a DLP x = logg h where x ∈ Zn we can reduce the problem
by choosing such an m and transforming the problem into the problem of computing
µm(x) = logg h

m . This problem is easier than the original problem since the search space
is smaller. Given a solution µm(x) = z to this smaller problem we can restrict the original
problem to µ−1

m (z) . Effectively this transformation allows us to replace a problem of size
n with two problems of sizes n

h and h .
The strength of this approach is twofold:

a) The reduction can be applied recursively. The smaller problem is a DLP in Zn
h
. If n

h

has a non-trivial divisor h′ another reduction can be applied, splitting the problem of
size n

h into two problems of sizes n
hh′ and h′ .

b) The reductions can be applied in parallel. Given several divisors h1, . . . , hi of n a
DLP in Zn can be reduced to i different smaller problems of sizes n

h1
, . . . , nhi . The

solution to the original problem then has to lie in the intersection of all preimages
which is of size n

lcm(h1,...,hi)
.

For a DLP in Zn the size of the biggest problem that can not be split further is of size
p where p is the biggest prime dividing n . This DLP of size p can be treated by one
of the algorithms presented in the previous section with complexity O(

√
p) . Given the

prime decomposition of n =
∏m
i=1 p

ai
i it follows that the computational effort is of order

O(ma
√
p) where p is the biggest prime dividing n and a the biggest exponent in the

32

Public-Key Cryptography

decomposition. It should be noted though that the key length is
∑

i aidlog2 pie , hence it
follows that the computational effort grows linear wrt. the keylength in a while it grows
exponential in the prime p . Therefore the complexity relates directly to how smooth the
number n is.

2.6 Quantum Algorithms

The search for alternatives to the factoring and the discrete logarithm problem has gained
a lot of attention since Shor presented his algorithm [29] in 1994 that enables quantum
computers to solve both these problems efficiently. A whole new field of so-called post
quantum cryptography has been established and as of now, four different candidates of
computational problems have emerged: coding based cryptography, lattice based systems,
multivariate polynomials and hash functions.
In this section we give a short overview of how quantum algorithms can be used to attack
the DLP and provide some intuition as to why the same line of attack will not work in
the semigroup setting, unless further breakthroughs in the field of quantum algorithms
are achieved.

Quantum algorithms work on what are called qubits as opposed to boolean bits. A qubit
is a unit vector in C2 represented by basis vectors |0〉 and |1〉 . The space of all possible
states is denoted as H := {α|0〉+ β|1〉 | |α|2 + |β|2 = 1, α, β ∈ C} . Combining m qubits
through entanglement leads to a space state that is the tensor product of m copies of the
space H and is denoted by Hm :=

⊗m
i=1H . The basis vectors of this space have different

notations, e.g. in H3 the following represent the same vector |1〉 ⊗ |0〉 ⊗ |1〉 = |101〉 = |5〉
where the last equality is given by the binary representation of 5 .
A collection of entangled qubits is called a quantum register and may be manipulated in
one of two ways:

i) The state can be changed by applying a unitary transformation. (In implementations
one needs to consider the task of approximating these transformations)

ii) The state of the system can be measured. This measurement will only return one of
the basis vectors. For a register of m qubits in state

∑2m−1
i=0 αi |i〉 , where (αi) ∈ C2m

is a unit vector, the probability of reading the basis vector |i〉 is given by |α2
i | . Upon

measuring the system collapses into the state |i〉 for the basis vector |i〉 that was
read.

One particular unitary transformation of interest to us is the following

33

Public-Key Cryptography

Definition 46 (Quantum Fourier Transform)
For a positive n ≥ 1 a unitary transformation can be defined through

QFTn : Cn → Cn

|a〉 7→ 1√
n

n−1∑

b=0

ωab |b〉

where ω is a n-th root of unity, e.g. ω = e
2πi
n . In matrix form QFTn is represented as

QFTn =
1√
n




1 · · · 1

ω ω2 · · · ωn−1

... ω2 ω4 · · · ω2(n−1)

...
...

...
1 ωn−1 ω2(n−1) · · · ω(n−1)2



.

It should be noted that QFTn can be applied to any quantum register of at least
m := dlog2(n)e qubits by having QFTn act on n of the 2m basis vectors and leaving the
other coefficients untouched.
This transformation can be effectively approximated in quantum computers [23].

We now investigate a class of problems that can be effectively solved by quantum
algorithms.

Definition 47 (Hidden Subgroup Problem (HSP))
Let G > H be groups, X a finite set, and f : G→ X such that f is constant on cosets
of H but takes on distinct values on each coset. Let m := dlog2(n)e and assume that
the unitary transformation

U : H2m −→ H2m

|g〉|x〉 7−→ |g〉|x⊕ f(g)〉,

where x ∈ X and ⊕ is the componentwise addition mod 2 on binary representations of
X , can be efficiently performed. Find a generating set for H .

Most problems, that can be solved efficiently with quantum algorithms, translate into
instances of the HSP. In these cases the group is a finite abelian group and a quantum
algorithm need about log(|G|) operations to solve the problem, see [23] for more details.

34

Public-Key Cryptography

For non-commutative groups the problem seems to be much harder and only little progress
has been made, see for example [21] for information on treating the symmetric group.
The DLP ` = logg h in a group 〈g〉 of order p translates into a HSP in the group
(Zp,+)× (Zp,+) . The subgroup in question is the group H generated by (`, 1) . We will
present the algorithm for the DLP in Algorithm 49 after this lemma.

Lemma 48 Let ω 6= 1 be a n-th root of unity, then
∑n−1

j=0 ω
j = 0.

Proof i) Assume ω is a primitive n-th root. Then the powers of ω generate all
possible n-th roots and the sum in question is the coefficient for xn−1 in the product∏n−1
j=0 (x− ωj) = xn − 1 and therefore 0 .

ii) If ω is not primitive then ω = ζk for a primitive root ζ with gcd(k, n) = d > 1 . It
follows that ω is of order m = n

d and therefore a primitive m-th root. Furthermore∑n−1
j=0 ω

j = d
∑m−1

j=0 ωj and by i)
∑m−1

j=0 ωj = 0 . �

Algorithm 49 (Shor’s Algorithm [29])
We want to solve the DLP ` = logg h in the group 〈g〉 of prime order p and let
m := dlog2(p)e . We therefore define a function f(x, y) := gxhy = gx+`y . Let T be the
subspace of (Zp,+)× (Zp,+) generated by (1, `) .

i).. Start with a quantum system in state |0, 0, 0〉 ∈⊗3Hm .

ii).. Apply QFTp to the first two registers, this brings the system into the uniform state
1
p

∑p−1
x=0

∑p−1
y=0 |x, y, 0〉 .

iii).. Apply f to our quantum state and get 1
p

∑p−1
x=0

∑p−1
y=0 |x, y, f(x, y)〉 .

iv).. Perform QFTp on the first two registers.

v).. A measurement of the first two registers will output an element of T⊥ .

Proof After step iii) the system is in the state

1

p

p−1∑

x=0

p−1∑

y=0

|x, y, f(x, y)〉.

35

Public-Key Cryptography

We sort by the last entry f(x, y) = ge it then follows that x = e− `y

1

p

p−1∑

e=0

p−1∑

y=0

|e− `y, y, ge〉.

Step iv) applies QFTp to the first two registers leading to

1

p

p−1∑

e=0

p−1∑

y=0

1√
p

p−1∑

s=0

ω(e−`y)s 1√
p

p−1∑

t=0

ωty|s, t, ge〉 =
1

p2

p−1∑

e=0

p−1∑

y=0

p−1∑

s=0

p−1∑

t=0

ω(e−`y)s+ty|s, t, ge〉.

We rearrange
1

p2

p−1∑

e=0

p−1∑

s=0

ωes
p−1∑

t=0

p−1∑

y=0

ω(t−`s)y|s, t, ge〉

and use Lemma 48 to see that
∑p−1

y=0 ω
(t−`s)y 6= 0 iff t − `s = 0 . It follows that only

vectors with t = `s remain in the sum

1

p

p−1∑

e=0

p−1∑

s=0

ωes|s, `s, ge〉.

Now measuring the first two registers will with probability p−1
p return a non-zero element

(x, y) = (s, `s) of T⊥ . We calculate the discrete logarithm as ` = yx−1 . �

Conclusion We see that Algorithm 49 relies heavily on additional properties of the
exponentiation, i.e. the semigroup action of (Zn, ·) on a cyclic group. For fixed g ∈ G
the map Ψg : (Zn,+) → G, z 7→ gz is a group isomorphism of cyclic, hence abelian,
groups. Only this makes the treatment with the quantum Fourier transform possible.
The treatment of non-abelian groups is an ongoing topic in research and only partial
results have been achieved. It has been shown [22] that for the symmetric group an
approach using Fourier sampling will not solve the hidden subgroup problem. For a
general semigroup action we are not aware of a translation into a hidden subgroup problem
and it is unlikely that this is possible unless additional structure of the action and the
semigroup are assumed.

36

3 Key-Exchange based on Semigroups

3.1 Semigroup Discrete Logarithm

The Diffie-Hellman protocol as described in Protocol 30 is based on the hardness of the
DLP. Pollard’s Rho attack relies on the fact that the DLP is a Zn action on a group G

and it is possible to calculate linear functions in the exponents by (gx)agb = gax+b .
A naive approach to counter this attack is to replace G with a semigroup S with few
units. A key exchange based on this idea has been proposed in [11]. An analysis of this
protocol by Banin and Tsaban [2] showed that it is vulnerable in a quantum setting and
can be reduced to a standard DLP in a group.

The authors of [11] suggest the semigroup Mat3×3 (Z7[S5]) and the following variation
on the Diffie-Hellman protocol (Protocol 30).

Protocol 50 (Semigroup Diffie-Hellman Protocol)
0.) Setup:

The protocol parameters are negotiated. These include the semigroup S and an
element α ∈ S .

1.) Generation of public/private keys:
Both parties, Alice and Bob, choose secret elements sA, sB ∈ N respectively as their
secret keys and calculate their public keys as pA = αsA , pB = αsB .

2.) Exchange of public keys:
Alice and Bob exchange their public keys pA and pB .

3.) Calculating the shared key:
Alice, upon receiving pB from Bob, calculates kA := psAB = αsBsA .
Bob similarly computes kB := psBA = αsAsB .

Correctness of the protocol follows by commutativity in N .

37

Key-Exchange based on Semigroups

Alice Channel / Eve Bob

chooses private key public base element chooses private key
sA ∈ N α ∈ X sB ∈ N

calculates calculates
psAB psBA

pA = αsA

pB = αsB

Figure 3.1: Protocol 50

In the aforementioned paper the authors suggest that Alice chooses the base element α
at the beginning of the protocol. Since the order of the element α might not be known
the two parties choose their secrets in N .
The preperiod and period of α determine the size of the set of possible keys and are
crucial to the hardness of the following problem.

Definition 51 (Semigroup DLP)
Given a semigroup S and elements α, β ∈ S such that β = αx for some x ∈ N determine
y ∈ N such that β = αy .

If the preperiod and period p, r of α are known, we can restrict the answer to the unique
value 0 ≤ y ≤ p+ r − 1 that solves the semigroup DLP αy = β . We will refer to this
value as y = slogα β .

Theorem 52 (see [2]) A semigroup DLP slogα β can either be reduced to a DLP in a
group of order r or solved in O(log(p)) steps if the preperiod p and period r of α are
known.

Proof Split the semigroup generated by α into two sets L := {αi : 1 ≤ i < p} and
C := {αi : p ≤ i < p+ r} . The set C is in fact a group of order r isomorphic to Zr by
the morphism ϕ : αi 7→ i mod r . Given an element γ ∈ 〈α〉 we realize that γ ∈ C iff
γαr = γ (this can be exchanged with γr+1 = γ). If β ∈ C then the problem has been
reduced to a DLP in a group of order r . The generator for the group is the element αg

where g is the unique integer such that p ≤ g < p+ r and g = 1 mod r .
If β = αx ∈ L then we know that 0 ≤ x < p . Assume we have an element γ = αy and
we know that a ≤ y < b ≤ p . If γαp−b+b

b−a
2
c ∈ C then it follows that y + b b−a2 c ≥ p

38

Key-Exchange based on Semigroups

which implies b− b b−a2 c ≤ y < b . If γαp−b+b
b−a
2
c ∈ L then we get y + b b−a2 c < p which

leads to a ≤ y < b− b b−a2 c . We can use this method repeatedly starting with β and the
interval 0 ≤ x < p till x is found after dlog2 pe steps. �

We summarize this section in the following corollary.

Corollary 53 Assuming that preperiod and period of the involved elements are known or
computable, a semigroup DLP only achieves maximal hardness if p = 0 and r is prime.

In the case p = 0 the semigroup DLP is equivalent to a DLP in a group of order r hence
making this approach weaker or at most as hard as currently known methods.

3.2 Key-Exchange Protocols based on Semigroup Actions

A different and more promising approach follows from the realization that the exponen-
tiation of group elements can be more generally described as a semigroup action. This
naturally leads to a new description of the Diffie-Hellman protocol in terms of semigroup
actions

Protocol 54 (Diffie-Hellman with Semigroup Action)
0.) Setup:

The protocol parameters are negotiated. These are the semigroup S and an S -set X
together with a base element α ∈ X .

1.) Generation of public/private keys:
Both parties, Alice and Bob, choose secret elements sA, sB ∈ S respectively as their
secret keys and calculate their public keys as pA = sA . α and pB = sB . α .

2.) Exchange of public keys:
Alice and Bob exchange their public keys pA and pB .

3.) Calculating the shared key:
Alice, upon receiving pB from Bob, calculates kA := sA . pB = (sA · sB) . α .
Bob similarly computes kB := sB . pA = (sB · sA) . α .

To ensure correctness, i.e. kA = kB , Alice and Bob might have to be restricted to choosing
their secret keys from commuting subsemigroups SA, SB ⊆ S .

39

Key-Exchange based on Semigroups

Alice Channel / Eve Bob

chooses private key public base element chooses private key
sA ∈ SA α ∈ X sB ∈ SB

calculates calculates
sA . pB sB . pA

pA = sA . α

pB = sB . α

Figure 3.2: Protocol 54

The security of this protocol relates to similar problems as in the case of Protocol 30.
The task of retrieving the secret key from the public key is equivalent to the following
problem.

Definition 55 (Semigroup action problem (SAP))
Given an S -set X and two elements x ∈ X and y ∈ S . x , find an element s ∈ S such
that s . x = y .
The solution to this problem is not necessarily unique and we define the set of all solutions
as sapx y := {s ∈ S : s . x = y} .

If Eve has access to an algorithm that solves the SAP in the semigroup SA she can
retrieve Alice’s secret key sA from her public key pA , or at least an equivalent element
sE ∼α sA under the equivalence relation introduced in Definition 18. With this element
Eve can compute the shared secret as

sE . (sB . α) = (sEsB) . α = (sBsE) . α = sB . (sE . α) = sB . (sA . α) = kB.

We point out that Eve has to solve the SAP in the subsemigroup SA to ensure commuta-
tivity with sB .
Calculating the shared secret from the public keys is described by the following problem.

Definition 56 (Semigroup Action Diffie-Hellman Problem (SADHP))
Let X be an S -set. Given the elements α, s . α and t . α calculate st . α.

Remark 57
There exists a Turing reduction SADHP αT SAP if Protocol 54 achieves correctness.

40

Key-Exchange based on Semigroups

Proof Given an algorithm L that solves the SAP in SA , i.e. L(α, β) ∈ sapα β ∩ SA we
can design an algorithm C that solves the SADHP in polynomial time. Given an instance
(α, s . α, t . α) of the SADHP the algorithm C calls L on (α, s . α) obtaining s′ ∼α s and
then calculates s′ . (t . α) = s′t . α . Since s′ could have been Alice’s secret as far as Bob
could tell from the execution of the protocol, it follows that s′t . α = st . α = kA assuming
correctness of the protocol. �

The indistinguishability of the shared secret from random elements is captured in the
definition below.

Definition 58 (SADDHP)
Let X be an S -set. We call a tuple (α, s . α, t . α, β) ∈ X4 a valid Diffie-Hellman tuple if
β = st . α . Given a tuple of group elements (α, s . α, t . α, β) that is with probability 1

2

a valid Diffie-Hellman tuple and in all other cases β is chosen uniformly random from
S . α , decide whether the tuple is valid.

Remark 59
A similar Turing reduction SADDHP αT SADHP as in the classical case applies.

Proof Given an algorithm C that solves the SADHP, i.e. C(α, s . α, t . α) = st . α we can
construct an algorithm D that solves the SADDHP. Given an instance (α, s . α, t . α, β)

of the SADDHP the algorithm D calls the subroutine C on (α, s . α, t . α) and receives
st . α as a result. If β = st . α then D knows that the triple is valid, otherwise it is not.�

We will study the SAP for several examples of semigroup actions in the following sections.

3.3 Comparison of Diffie-Hellman and
Anshel-Anshel-Goldfeld

An interesting comparison of the Diffie-Hellman protocol and the Anshel-Anshel-Goldfeld
protocol was conducted in [30]. More precisely, they compared the Ko-Lee protocol from
[15] to Protocol 36. The Ko-Lee protocol is in our notation an instance of Protocol 54.
They propose to use conjugation in a group G as a group action of G on itself. Hence
for g, x ∈ G the action is given as ϕ : (g, x) 7→ gxg−1 . In both cases the authors suggest
using braid groups. Although the use of inner automorphisms is a common feature of
both protocols, there are differences in the problems an adversary faces.

41

Key-Exchange based on Semigroups

Protocol Secret Keys Public Keys

Ko-Lee sA ∈ LB` pA := sAxs
−1
A

sB ∈ RBr pB := sBxs
−1
B

Anshel-Anshel-Goldfeld sA ∈ Bn pA := (sAxs
−1
A)x∈S

sB ∈ Bn pB := (sBxs
−1
B)x∈S

Table 3.1: Comparison Ko-Lee, Anshel-Anshel-Goldfeld

For the Ko-Lee protocol the choices for the secret keys are restricted to commuting subsets
LB` := 〈σ1, . . . , σ`−1〉 and RBr := 〈σ`+1, . . . , σn〉 , where `+ r = n , of Bn . The public
key is the image of the corresponding inner automorphism of one element x ∈ Bn . In
the Anshel-Anshel-Goldfeld protocol the secret keys are chosen from Bn . While the
public keys are the images of a generating subset S ⊂ Bn under the corresponding inner
automorphism.

In [30] the authors investigate the relation between a special instance of the SAP that
they call the (subgroup) conjugacy search problem and the task of retrieving the shared
secret from the public keys, i.e. the SADHP.

Definition 60 (Subgroup Conjugacy Search Problem (CSP))
Given a group G and two elements g, h ∈ G , find j ∈ J < G such that jgj−1 = h .

For the Ko-Lee protocol it is sufficient to solve the CSP and find j ∈ LBn such that
jxj−1 = pA . An adversary then calculates the shared secret the same way Alice does
jpBj

−1 = jsBxs
−1
B j−1 = sBjxj

−1s−1
B = sBsAxs

−1
A s−1

B = K . But in fact it suffices for an
adversary to solve a simpler, less restrictive problem.

Definition 61 (Decomposition Problem)
Given a group G and two elements g, h ∈ G find j, k ∈ J < G such that jgk = h .

This problem is equivalent to the CSP with the additional requirement that k = j−1 .
But even without this condition, given j, k ∈ LBn such that jxk = sAxs

−1
A the shared

secret can be computed as jpBk = jsBxs
−1
B k = sBjxks

−1
B = sBsAxs

−1
A s−1

B = K . Hence
the SADHP for the Ko-Lee protocol is at most as hard as the CSP.

The situation is quite different for the Anshel-Anshel-Goldfeld protocol. An adversary is
given several simultaneous conjugates (sAxs

−1
A)x∈S instead of just one. But finding an

42

Key-Exchange based on Semigroups

element k ∈ Bn such that kxk−1 = sAxs
−1
A for all x ∈ S is not sufficient to calculate

the shared secret. An adversary would further need to be able to describe the solution as
a composition of the elements of S .
Given j, k ∈ Bn such that jxk = sAxs

−1
A for all x ∈ S and a decomposition of k =∏m

i=1 xi into generators xi ∈ S the shared secret can be computed as

j
m∏

i=1

sBxis
−1
B = jsBks

−1
B = sAsBs

−1
A s−1

B = K.

The SADHP is therefore at least as hard as the (simultaneous) CSP in the Anshel-Anshel-
Goldfeld protocol.

3.4 Monico-Maze-Rosenthal Protocol

The semigroup action from Example 17 has been suggested for application in a Diffie-
Hellman-like key-exchange protocol in [18]. Let as before S a finite congruence-simple
semiring, M := Matn×n(S) with one. As shown in [35] the center of any finite congruence-
simple semiring with one is just C = {0, 1} . Let L,R ∈M be two fixed matrices, then
for the protocol the semigroup was restricted to the commutative subsemigroup

PL,R := {(f(L), g(R)) : f, g ∈ C[x]} ⊆ M×Mop.

The authors further suggest limiting the degrees of the involved polynomials, effectively
working in a subset of PL,R

P
(dL,dR)
L,R := {(f(L), g(R)) : f, g ∈ C[x], deg(f) ≤ dL, deg(g) ≤ dR} ⊆ PL,R.

Protocol 62 (Monico-Maze-Rosenthal Protocol (MMR))
0.) Setup:

The protocol parameters are negotiated. These are the semiring S , the matrices
L,R,M ∈M and dL, dR ∈ N .

1.) Generation of public/private keys:
Both parties, Alice and Bob, choose secret elements sA, sB ∈ P (dL,dR)

L,R respectively as
their secret keys and calculate their public keys as pA = sA .M = fA(L) ·M · gA(R)

and pB = sB .M = fB(L) ·M · gB(R) .

43

Key-Exchange based on Semigroups

2.) Exchange of public keys:
Alice and Bob exchange their public keys pA and pB .

3.) Calculating the shared key:
Alice, upon receiving pB from Bob, calculates KA := sA . pB = fA(L) · fB(L) ·M ·
gB(R) · gA(R) = (sA · sB) .M .
Bob similarly computes KB := sB . pA = fB(L) · fA(L) · M · gA(R) · gB(R) =

(sB · sA) .M .
Correctness follows from commutativity of P (dL,dR)

L,R .

Alice Channel / Eve Bob

chooses private key public base element chooses private key
(fA(L), gA(R)) ∈ P (dL,dR)

L,R M ∈M (fB(L), gB(R)) ∈ P (dL,dR)
L,R

and semiring P (dL,dR)
L,R

calculates calculates
fA(L)fB(L)MgB(R)gA(R) fB(L)fA(L)MgA(R)gB(R)

fA(L)MgA(R)

fB(L)MgB(R)

Figure 3.3: Protocol 62

Remark 63
In [18] the authors state that "For cryptographic purposes it is important that the
involved semirings are simple to avoid a Pohlig-Hellman type reduction of the SAP". This
statement is unfounded for several reasons that we would like to discuss.

1.) The authors choose matrix rings over semirings since these are simple iff the base
semiring is [18, Lemma 5.5]. In particular they find the semiring R6 (see Example 11)
by computation and choose to work in Mat20×20(R6) . Although this semiring is
simple, their protocol actually uses the subsemiring PL,R instead of Mat20×20(R6) .

2.) Furthermore they consider simple semirings although the cryptographic application
only uses the multiplicative semigroup structure. Therefore the simplicity of the ring
does not relate to the SAP, but the simplicity of the multiplicative semigroup would
be of importance.

We will illustrate the Remark 63 with the following examples.

44

Key-Exchange based on Semigroups

Example 64
Although R6 is simple as a semiring, neither of the semigroups (R6,+) and (R6, ·) are.

a) For (R6,+) the following partitions are examples of congruence classes of an associated
congruence relation.

C1 = {{0, 4}, {1, 2, 3}, {5}}
C2 = {{0}, {1, 2, 3, 4}, {5}}
C3 = {{0, 4}, {1, 2, 5}, {3}}

b) On (R6, ·) the relation that separates 1 from all other elements is a congruence relation,
as the relation that separates units from non-units always is.

To discuss the simplicity of the multiplicative matrix group proposed we can use the
structure theorems on congruence-simple semigroups. Finite simple semigroups can be
classified using the two following theorems (see [9]).

Theorem 65 Let S be a finite congruence-simple semigroup with |S| > 2 without a zero
element then S is a finite simple group. 2

Theorem 66 Let S := I × J ∪ {0} for I, J finite sets of cardinalities m and n . Let P
be a n×m matrix of ones and zeros such that no row or column is identically zero and
no two rows or columns are identical. Define a binary operation on S by

(i, j)(k, l) =





(i, l) if pj,k = 1

0 if pj,k = 0

0(i, j) = (i, j)0 = 0.

Together with this operation S becomes a simple semigroup and it can be shown that any
semigroup T with zero is simple iff it is isomorphic to a semigroup of this type. 2

In fact Theorem 66 guarantees that (PL,R, ·) (or (C[L], ·)) is not a congruence simple
semigroup whenever L 6= En or R 6= En . The semigroups (PL,R, ·) contain an absorbing
element and are constructed to be commutative. In contrast the construction above can
never be commutative except for the case when m = n = 1 . To see this choose indices

45

Key-Exchange based on Semigroups

i, j, k, l such that pj,k = 1 and pi,l = 0 , this is always possible. Then it follows that

(i, j)(k, l) = (i, l)

but (k, l)(i, j) = 0.

Hence they can not be isomorphic to a semigroup of the type described in Theorem 66
and are therefore not congruence simple.
The semigroup (Matn×n(R), ·) for any semiring R with one is neither simple since it has
a neutral element and units. The relation that separates units from non-units is therefore
a non-trivial congruence on Matn×n(R) .

3.4.1 Statistical Analysis of the Monico-Maze-Rosenthal protocol

We investigate the distribution on secret keys for the above protocol, using the challenge
parameters from [18].

L :=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0




R :=




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0




The matrix L has preperiod and period 34 and 420 , i.e. L34 = L454 , while for R the
preperiod and period are 20 and 60 , i.e. R20 = R80 .

46

Key-Exchange based on Semigroups

M :=




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 2 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1
0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0




For a matrix X denote by N(r;X) := |{(i, j) : Xi,j = r}| the number of entries that are
r . It is easy to see that for random uniform 20× 20 matrices X over R6 the probability
for N is given as

Pr
[
N(r;X) = i

]
=

(
400
i

)
5400−i

6400

for any r ∈ R6 .

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300 350 400

P
r[
N
(r
;X

)
=

i]

i

Figure 3.4: Probability of exactly i occurrences of r for uniformly random matrices

This leads to the tail probabilities shown in Table 3.2 that we want to compare with the
experimental results.
We simulated the semigroup action for different parameters and noted the number of
zeros, ones and fives in the generated public keys. We randomly uniform chose 223 pairs

47

Key-Exchange based on Semigroups

Pr[N(r;M) ≤ 20] 8.37393762858873e-13
Pr[N(r;M) ≥ 112] 1.0020732136780253e-08
Pr[N(r;M) ≥ 200] 4.38777185472177e-53
Pr[N(r;M) ≥ 220] 5.969396492834719e-68
Pr[N(r;M) ≥ 250] 1.5140206261192368e-93

Table 3.2: Probabilities for uniformly random matrices

(f, g) of polynomials in C[x](50) × C[x](50) and calculated X = (f(L), g(R)) .M .
N(1;X) took on 168 different values between 107 and 292
N(0;X) took on 74 different values between 19 and 121
N(5;X) took on 11 different values between 0 and 20

For N(5, X) and N(1, X) Table 3.3 summarizes the results.

N(5;M) # of occurrences

0 2098149
6 1
7 69
8 4410
9 204003
10 3984600
12 1
14 23
16 2216
18 102099
20 1993037

N(1;M) # of occurrences

≥ 200 7294864 87%
≥ 220 6462415 77%
≥ 250 4114861 49%

Table 3.3: Results for polynomials of degree 50

Comparing these results shows that the generated matrices behave quite differently from
matrices chosen uniformly at random. This is of course undesirable since it makes the
results predictable. Seeing as the secret key follows from another application of the group
action, it follows that the secret key will behave similar.

This behavior is easily explained when considering the lattice structure of the additive
semigroup (R6,+) . Given two random variables x, y that uniformly random take on
values in R6 the following table shows the distribution of their sum.
These probabilities are of course even more amplified when more than two elements are

48

Key-Exchange based on Semigroups

z 0 1 2 3 4 5

Pr[x = z] 1
6

1
6

1
6

1
6

1
6

1
6

Pr[x+ y = z] 1
36

11
36

5
36

5
36

3
36

11
36

Table 3.4: Probabilities of sum of two elements

added. With this in mind we ran another set of experiments for polynomials of low degree.
We tested all possible combinations of non-zero polynomials of degrees up to 11, giving
us a total number of (212 − 1)2 pairs of polynomials.

N(1;X) took on 280 different values between 9 and 290
N(0;X) took on 307 different values between 20 and 363
N(5;X) took on 16 different values between 0 and 20

The results for N(5, X) and N(1, X) are presented in Table 3.5.

N(5;M) # of occurrences

0 ≤ ∗ < 5 4638721
5 ≤ ∗ < 10 7603200

10 ≤ ∗ < 20 4527104

N(1;M) # of occurrences

≥ 200 7294864 71%
≥ 220 6462415 55%
≥ 250 4114861 24%

Table 3.5: Results for polynomials of degree 11

The most severe flaw seems to be though the low number of different matrices generated
by this procedure as is shown in Table 3.6.

deg test runs unique matrices ratio

80 1.600.000 20839 76.78
50 223 = 8388608 156995 53.43
11 (212 − 1)2 = 16769025 6952858 2.41

Table 3.6: unique public keys generated

While polynomials of small degree seem to lead to a semigroup action that produces more
varied public keys, the low number of variables of course excludes them from cryptographic
applications.

49

Key-Exchange based on Semigroups

3.4.2 Steinwandt Suárez-Corona Attack

In [32] the authors identify several weaknesses of the proposed structures in [18] that have
earlier been mentioned in [17][Assumption 5.19]. They describe a heuristic algorithm that
solves the SAP in most cases, and we will present these ideas in this section.
Consider the problem of finding (f, g) ∈ sapM P . We start by reducing the problem to a
special subset sum problem in the additive semigroup generated by the elements in

C[L]≤dLMC[R]≤dR := {LiMRj : 0 ≤ i ≤ dL, 0 ≤ j ≤ dR}

where the numbers dL and dR are the restrictions on the degrees of the polynomials. The
SAP in Protocol 62 can be represented as a sum by using the linearity of the semigroup
action, i.e. the distributivity of the matrix multiplication.

Let f(L) =

dL∑

i=0

fiL
i

and g(R) =

dR∑

j=0

gjR
j

then f(L)Mg(R) =
∑

(i,j)

figjL
iMRj .

Now the problem of finding polynomials f and g is equivalent to finding a subset of
C[L]≤dLMC[R]≤dR that sums up to P such that the matrix (figj)i,j is the product of
two vectors IJT . It seems counter intuitive that this approach helps since we transformed
a problem in dL+dR+ 2 independent variables to a problem in (dL+ 1)(dR+ 1) variables
with additional conditions on the possible choices. However it should be noted that all the
matrices LiMRj can be computed beforehand and only addition remains as an operation.
The lattice structure of the semiring R6 as described by Figure 1.2 can now be used to
exclude summands LiMRj since it holds that

A ≤ A+B, ∀A,B ∈ Matn×nR6

where the partial order is extended to matrices by componentwise comparison. Hence it
follows

LiMRj � P ⇒ figj = 0.

Furthermore we see that for all join irreducible entries in P at least one summand must

50

Key-Exchange based on Semigroups

carry the same entry at this position. In their work Corona Suarez and Steinwandt claim
that after applying these observations a simple greedy algorithm that adds matrices that
minimize the Hamming distance between the sum and the challenge element P and then
adds the necessary matrices to keep the indices a cartesian product sufficed to solve the
problem.

We note that two properties of the suggested semigroup action were exploited in this
attack:

i) The semigroup action in Example 17 is linear, i.e. the maps ϕ(L,R) on the set
Matn×n(R) are in fact morphisms on the additive semigroup (Matn×n(R),+) .

ii) The addition is compatible with a partial order on R6 as described in Figure 1.2.

51

4 Attacks on Semigroup Actions

4.1 Brute-Force

For semigroup action problems we will now reconsider brute force attacks. Unless x is
free with respect to the action the set of solutions sapx y will contain more than one
element. This will increase an adversary’s chance of finding a solution.
Denote by p := | sapx y|

|S| the ratio of solutions within the semigroup S . Consider a brute-
force attack with independently uniformly at random chosen elements. The expected
number of tests is computed as in the case for the DLP. The probability that the brute-
force attack will succeed exactly at the t-th step is (1− p)t−1 p . Therefore the expected
number of tries is

E[t] = p
∞∑

t=1

t (1− p)t−1 = p
1

(1− (1− p))2
=

1

p
.

If we consider an attacker that avoids testing elements more than once, the analysis gets
a little more complicated. To determine how big the set T of tested elements should be
such that an attacker will have found a solution with probability at least 1

2 we use the
following notations, s := |S|, t := |T | and u := | sapx y| . We approximate and solve for t

Pr[T ∩ sapx y 6= ∅] =

1− Pr[T ∩ sapx y = ∅] =

1−
(
s−u
t

)
(
s
t

) ≥ 1

2

this is equivalent to

⇔ 2

(
s− u
t

)
≤
(
s

t

)

⇔ 2
u+t−1∏

i=u

(s− i) ≤
t−1∏

i=0

(s− i)

52

Attacks on Semigroup Actions

⇔ 2

t−1∏

i=u

(s− i)
u+t−1∏

i=t

(s− i) ≤
u−1∏

i=0

(s− i)
t−1∏

i=u

(s− i)

⇔ 2
u+t−1∏

i=t

(s− i) ≤
u−1∏

i=0

(s− i)

this is the case if

⇐ 2
u+t−1∏

i=t

(s− i) ≤ 2(s− t)u ≤ (s− u+ 1)u ≤
u−1∏

i=0

(s− i)

⇔ t ≥ s− 2−
1
u (s− u+ 1).

We note that for a > b the convention
∏b
a x =

∏a
b x
−1 was used. For s = 2160 and

different values of u Table 4.1 shows a lower bound for expected size of the set T . As

u := | sapx y| log2(s− 2−
1
u (s− u+ 1))

1 159
2 158.23
64 153.46

1024 149.47

Table 4.1: Brute-Force estimates for a SAP in a semigroup of size s = 2160

expected the effort of a brute-force attack is inversely proportional to the size of sapx y .

4.2 Time-Memory trade-offs for Semigroup Action Problems

Monico [20] and Maze [17] both mention variants of time-memory trade-offs for special
cases of SAPs. Monico describes an attack based on Brent’s cycle finding algorithm for
the case where S is a group. Maze argues that semigroups with large subgroups could be
attacked in the same manner by excluding all elements in S \S∗ first and then employing
Monico’s idea on the remaining subgroup S∗ .

Here, we will suggest an alternative to these lines of attack. We will adopt Shank’s
baby-step giant-step algorithm, since it lends itself to the situation at hand in a very

53

Attacks on Semigroup Actions

natural way, and develop a probabilistic algorithm.

Algorithm 67
Let X be an S -set and α ∈ X , β ∈ S . α .

i).. Precalculation: A list of giant-steps A := {si . α} where si ∈ S are chosen uniformly
at random is calculated and stored in memory.

ii).. For random u ∈ S∗ the element u . β is calculated and compared to the second
entries of elements in the list A .

iii).. If the element u . β is equal to some element s . α in A then it follows that
u−1s . α = β and that u−1s is a solution.

We tacitly assume that the element α is free with respect to the action, therefore the
SAP is of maximal hardness. Equivalently we assume that an adversary works in the
set of equivalence classes induced by ∼α . Furthermore we mention that not only the
elements si . α have to be stored but the according si as well.
To analyze the estimated running time of Algorithm 67 we use the following approximation.

Lemma 68 Let X be a set of size n, and let A,B ⊆ X be uniformly randomly chosen
subsets of sizes a and b respectively, where a+ b ≤ n . The probability of A and B being
disjoint is upper bounded by e−

ab
n .

Proof The exact probability is seen to be given by

Pr[A ∩B = ∅] =

[(
n

a

)(
n− a
b

)][(
n

a

)(
n

b

)]−1

=

(
n− a
b

)(
n

b

)−1

=
(n− a)!(n− b)!
(n− a− b)!n!

.

We find a good upper bound by assuming that the elements in B are chosen independently
of each other and might therefore form a set of size smaller than b , raising the probability
that the sets do not intersect.
Each element of B then has a probability of 1− a

n to not be in A . The probability that
all elements of B are not in A can then be bounded by

Pr [A ∩B = ∅] =

(
n− a
b

)(
n

b

)−1

≤ (n− a)b

nb
=
(

1− a

n

)b
≤ e−abn . (4.1)

The first inequality follows either by the considerations above or from multiplying by the

54

Attacks on Semigroup Actions

denominators and comparing the factors in the resulting products.

(
n− a
b

)(
n

b

)−1

≤ (n− a)b

nb

⇔
(
n− a
b

)
nb ≤

(
n

b

)
(n− a)b

⇔
b−1∏

i=0

(n− a− i)n ≤
b−1∏

i=0

(n− i)(n− a)

The last inequality in Equation (4.1) uses the well known inequality 1− x ≤ e−x which
holds for all x . �

Using Lemma 68 we can estimate the memory and computational effort needed for this
attack. This lemma applies to our scenario, even though the set B in question is restricted
to a right coset of the unit group, since A can be assumed to be sufficiently random over
S .
The algorithm is successful iff the list A and the list B of elements uj .β have a non-empty
intersection. We see that

Pr[A ∩ B 6= ∅] = 1− Pr[A ∩ B = ∅] ≥ 1− e−abn .

It follows that the attack succeeds with probability higher than 1
2 if,

Pr[A ∩ B 6= ∅] ≥ 1

2

⇐ e−
ab
n ≤ 1

2

⇔ ab

n
≥ ln(2) ≈ 0.693.

This shows that the complexity of this attack, given that a sufficient amount of units is
available, can be estimated by O(

√
n) .

A possible bottleneck for this attack is the number of available units in S since b ≤ |S∗| .
In fact if we assume that S has no units, apart from an identity, this attack is no better
than brute-force. If we consider the number b to be known or bounded, we can solve

55

Attacks on Semigroup Actions

Equation (4.1) for a prior to applying the last inequality.

Pr [A ∩ B = ∅] ≤ (n− a)b

nb
=
(

1− a

n

)b
≤ 1

2

ln(1− a

n
) ≤ − ln(2)

b

a ≥
(

1− b

√
1

2

)
n (4.2)

Example 69
We would like to estimate the effort for the SAP in Example 17 under the assumption
that a free element exists. The number of invertible matrices in the semiring Matn×n(R6)

has been calculated in [13, Corollary 4.13]. A generalized permutation matrix has exactly
one non-zero entry in every row and column and that entry is a unit, these matrices are
clearly units.The following theorem by Kendziorra [13] states that these are the only units
in this and many other cases.

Proposition 70 Let L be a finite irreducible lattice, I a finite index set, and A ∈
MatI×I(Res(L)). Then A is invertible iff A is a generalized permutation matrix.

We see that |Mat20×20(R6)∗| = 20! and in Mat20×20×Matop20×20 we therefore have
b = 20!2 units and n = 6800 ≈ 22068 elements. With the help of Equation (4.2) we can
then find an estimate for a by

log2(a) ≥ log2(n) + log2(1− 2−
1
b) = log2(6800) + log2(1− 2−

1
20!2) ≈ 2068− 123.

Solving Equation (4.1) for a leads to a similar estimate. It should be noted that this is
an improvement over a brute force approach by a factor of 2122 since we would expect to
test roughly 22067 , i.e. half the elements of S , before finding the solution. Although this
is an improvement it comes at the cost of some precalculation and memory and still is
nowhere near feasible.

The situation for the SAP in Protocol 62 is of course very different. We work in the
semigroup PL,R or depending on the choice of parameters a subset P (dL,dR)

L,R of limited
degree polynomials. It is highly unlikely that the semiring C[A] for some matrix A

contains any units especially when we consider Proposition 70 with the low number and
highly restricted form of units in Matn×n(R6) . We will therefore modify this approach
and arrive at a Pohlig-Hellman like reduction.

56

Attacks on Semigroup Actions

4.3 Pohlig-Hellman Reductions

Let ε : S → X be a function whose evaluation requires non-trivial computational effort.
Then the problem of finding a/the preimage for a given x ∈ im(ε) ⊆ X is a common
problem in cryptography. The function ε could be exponentiation of a generator in a
finite field or calculating the multiple of a point on an elliptic curve. In these cases
S = Zn and the problem at hand is the DLP. When considering a hash function or a
block cipher as the function ε the problem at hand relates to preimage resistance and
resistance against cipher-text-only attacks. Both of which are actually very weak notions
of security in their respective settings and we normally require much stronger security
properties from hash functions and block ciphers.
We will consider a different viewpoint on the Pohlig-Hellman reductions that generalizes
well to the semigroup action setting. Define the function

e := χx ◦ ε : S −→ {0, 1}

s 7−→





1 if ε(s) = x

0 otherwise

that checks whether an element s ∈ S is a solution. Evaluation of e requires one use
of the function ε . We denote the set of solutions by E1 := e−1(1) = {s ∈ S : e(s) =

1} . A distinguishing attack works by finding another function d : S → {0, 1} that is
computationally less expensive than ε . The function d is called a distinguisher for e
if it holds that e(x) = 1 ⇒ d(x) = 1 or in other words D1 ⊇ E1 where D1 := d−1(1) .
Precision is traded for speed in this case and the function d is used to refine the search-
space. This can be done in one of two ways, depending on how well the function d is
understood:

1. The set D1 is directly calculated and instead of searching through S one uses this
smaller set.

2. Random elements from S are pretested with d , and ε is only applied to elements
that are in D1 .

The advantage in the first case is obvious, since the search-space can be reduced. In the
second case we can expect a gain if the function d is noticeable less computationally
expensive than e and D1 is not much bigger than E1 .
To find such a function d we revisit the Pohlig-Hellman reductions on DLPs, see Section 2.5.
The Pohlig-Hellman attack uses the fact that the multiplication with a divisor m|n leads

57

Attacks on Semigroup Actions

to a surjection onto a non-trivial ideal of Zn .

λm : Zn → mZn
z 7→ mz

Furthermore this map is naturally compatible with the semigroup action by the flow
property. For x . α = β we have

λm(x) . α = (mx) . α = m. (x . α) = m.β.

Once a solution y ∈ mZn such that y . α = m.β is found, we know that x . α =

β ⇒ mx .α = m.β = y . α . If α is free with respect to the semigroup action this
implies that mx = y . Hence, x can only be the solution if mx = y or equivalently
mx 6= y ⇒ x . α 6= β . Therefore the function

d : z 7−→





1 if mz = y

0 otherwise
(4.3)

is a distinguisher for the DLP.
We see that a necessary prerequisite is the existence of non-trivial divisors of n . Therefore
it is common practice to use cyclic groups of prime order. One accepts the fact that
Pollard’s Rho method and similar collision attacks are easier to perform in these groups,
since every collision will lead to a solution, to avoid these very powerful Pohlig-Hellman
reductions. Furthermore a solution y ∈ mZn must be found. The hardness of this task
depends amongst other things on the size of mZn .

In [18] the authors state that they choose to work in congruence simple semirings to avoid
a Pohlig-Hellman reduction for their semigroup action (see Example 17). As argued earlier
this statement ignores the fact that the additive structure of the semiring is irrelevant
for the semigroup action they consider. Assume there exists a non-trivial semigroup
morphism f : (M, ·) → (S, ◦) onto a smaller semigroup (S, ◦) . Then this morphism
could be used for a reduction. Consider the action of (A,B) ∈M×Mop on an element
X ∈M and apply the morphism f to the equation AMB = (A,B) .M

f(AMB) = f(A) ◦ f(M) ◦ f(B) = (f(A), f(B)) . Sf(M)

where . S is the two sided action of S × Sop onto itself. It follows that every solution

58

Attacks on Semigroup Actions

(A,B) ∈ sapM AMB can be mapped to a solution (f(A), f(B)) ∈ sapf(M) f(AMB) .
This allows us to define a distinguisher

d : (A,B) 7−→





1 if f(A) ◦ f(M) ◦ f(B) = f(AMB)

0 otherwise.

We show that the Pohlig-Hellman attack is not exclusive to the semigroup Zn , but similar
reductions can be applied to other semigroups and semigroup actions. Furthermore we
will present a type of reduction that does not rely on the existence or knowledge of
non-trivial morphisms. The considerations above motivate the following definition.

Definition 71 (Reduction)
Let X be an S -set then a reduction is a triple of maps (f, F,G) , where f : S → T and
F,G : X → Y with T a semigroup acting on Y , such that for all s ∈ S and x ∈ X it
holds that f(s) . G(x) = F (s . x) .

S X

T Y

Ψα

f F

ΨG(α)

G

Figure 4.1: Reduction

Example 72
i). Let (S, ·) be a semigroup and let (a, b) .m := a ·m · b be the action of S × Sop on

S defined by two-sided multiplication. Then for any morphism f : (S, ·) → (T, ◦)
the triple of maps ((f × f), f, f) forms a reduction, since

f(a ·m · b) =
(
f(a), f(b)

)
. f(m).

ii). Let (Zn, ·) act on a cyclic group G of order n with generator g by exponentiation.
Let d|n be a non-trivial divisor of n then the reduction in the classical Pohlig-
Hellman attack is given as (λd,Φd,Φd) , see Figure 4.2.

59

Attacks on Semigroup Actions

Zn 〈g〉

Zn
d

〈
gd
〉

Ψg

λd Φd

Ψgd

Φd

Figure 4.2: Pohlig-Hellman Reduction for the DLP

We call a reduction effective if the maps f, F and G can be efficiently computed and it
holds that |S| > |T | > 1 .
Given a reduction, an adversary can project a SAP in S onto a SAP in T . If she is able
to solve the SAP in T she can restrict the search in S to preimages of the solutions in T

under the map f . Note that this procedure does not rely on f being a morphism.
Given an effective reduction (f, F,G) we can construct a distinguisher

d(s) :=





1 if f(s) ∈ sapF (x)G(y)

0 otherwise.

Comparing this definition of d with (4.3) we see that a further simplification could be
made since in the case of a DLP the set of solutions is singleton. For more general SAPs
we have to consider the possibility of sapF (x)G(y) having several elements and it is not
immediately clear whether it holds that for every t ∈ sapF (x)G(y) there exists a solution
to the original SAP in the preimage of t . The only counterexamples we have found are
trivial in the sense that t /∈ im(f) and therefore has no preimages. We formulate the
following open problem.

Open Problem 73
Let X an S -set and (f, F,G) a reduction for the corresponding SAP, t ∈ im(f) . Under
what conditions does the following implication hold?

t ∈ sapF (x)G(y) ⇒ f−1(t) ∩ sapx y 6= ∅

We now want to describe a very general class of reductions on general semigroups.

Proposition 74 Let S be a finite monoid, X an S -set and m ∈ S then the triple of
maps (λm,Φm, id) forms a reduction. This reduction is effective iff m is a non-unit and

60

Attacks on Semigroup Actions

the monoid operation and action are efficiently computable.

Proof By the definitions of λm and Φm it holds for all α ∈ X and s ∈ S that

λm(s) . α = (mx) . α = m. (x . α) = Φm(s . α).

The reduction maps the monoid S onto its right ideal mS , this ideal is a proper ideal iff
m is not a unit. �

As in the case of a Zn action the reductions can be applied recursively and in parallel.
A SAP in S can be split into several smaller SAPs in right ideals n1S, . . . , nkS . The
problem in n1S can further be reduced to problems in n1,1n1S, . . . , n`,1n1S .

S

n1S

n1,1n1S

.

.

.

n`,1n1S

M

nmS

.

.

.

Figure 4.3: Pohlig-Hellman reductions for a semigroup S

The relations in the tree are not necessarily inclusions since mnS is not necessarily
a subset of nS . But we assume that the elements n∗ are chosen in such a way that
|nl,∗n∗S| < |n∗S| , meaning the right ideals get successively smaller.
When creating such chains it is interesting to look at minimal non-trivial elements, e.g.
the minimal right ideal M in Figure 4.3. By the finiteness of S it is obvious that every
chain ends in the zero ideal. Consider a minimal non-trivial element M in such a chain,
i.e. there exists no element s ∈ S such that |sM | < |M | unless sM is the zero ideal.
Such an ideal M has the property that for all s ∈ S it holds that either

sM = {0} or |sM | = |M |.

If we restrict this to the ideal M we see that for every element x ∈M it follows that λx is
either zero or induces a permutation of the elements. The subset M∗ := {x ∈M : λx 6= 0}
of elements that act as permutations on M is in fact a group.

61

Attacks on Semigroup Actions

Example 75
1. For (Zn, ·) the minimal ideals are the multiplicative semigroups of the finite fields

(Zp, ·) for all p|n .

2. In Matn×n(k) , where k is a field the minimal non-zero right ideals are generated
by the matrices Ei,j with a one in position i, j and zeros everywhere else. The
matrices Ei,j and Ei′,j′ generate the same ideal iff i = i′ and we therefore have n
different such ideals.
The right ideal Ii := Ei,j Matn×n(k) is the set of all matrices with zeros outside of
the i-th row. Let A ∈ Ii then λA is the zero function if A has a zero at position
i, i , otherwise λA is a bijection of Ii .

3. We revisit Example 11, the semiring Matn×n(R) of n× n matrices over a semiring
R . For the whole matrix semiring the situation is similar to the previous example.
Minimal right ideals are generated by the matrices rEi,j where r ∈ R generates a
non-trivial minimal right ideal in R .
The semiring R6 has two non-trivial minimal right ideals {0, 2, 5} and {0, 3, 4} we
therefore have 2n non-trivial minimal right ideals in Matn×n(R6)

4. For the commutative semiring PL,R as in Protocol 62 the only non-trivial minimal
principal ideal is

(∑p+r−1
n=p Ln,

∑q+s−1
n=q Rm

)
PL,R which has only two elements.

We describe examples for reductions in different semigroups.

Example 76
1. Consider the semigroup (Zn, ·) , its non-units are the elements not coprime to n .

Let
∏m
i=1 p

ei
i for 1 ≤ i ≤ m and define di := n

p
ei
i

. The reductions applied by the
standard Pohlig-Hellman attack on Zn actions are displayed in Figure 4.4. The

S

d1Zn p1d1Zn pe1−1
1 d1Zn

dmZn pem−1
m dmZn

.

.

.

Figure 4.4: Pohlig Hellman reductions for Zn

minimal elements pei−1
i diZn are of size pi and every x ∈ peidiZn has exactly pi

preimages in pe−1
i diZn .

62

Attacks on Semigroup Actions

2. Let R be a congruence simple semiring and C := {0, 1} its center. For fixed integers
p, r ∈ N we will consider the commutative semiring Crp [x] := C[x]�∼ with ∼ being
the equivalence relation generated by xp ∼ xp+r . We note that the semiring C[L]

used in Protocol 62 is a surjective image of Crp [x] when p and r are the preperiod
and period of L .
We describe the elements as sequences of their coefficients, e.g. for f ∈ Crp [x] we
write f = [f0, . . . , fp−1; fp, . . . , fp+r−1]. Consider the map λx in this semiring

λx([f0, . . . , fp−1; fp, . . . , fp+r−1]) = [0, f0, . . . , fp−2; fp−1 + fp+r−1, fp, . . . , fp+r−2].

This map clearly is not injective if p > 0 as the element 1 has no preimage. The
same reduction stays effective p times. For the semiring xpCrp [x] the map λx is
a bijection, since for all f ∈ xpCrp [x] we have f = [0, . . . , 0; fp, . . . , fp+r−1] and
λx(f) = [0, . . . , 0; fp+r−1, fp, . . . , fp+r−2] .
If r is not prime then the chain of ideals can be continued by taking any non-trivial
product r = a · b and considering the ideal xp

∑b−1
n=0 x

anCrp [x] . As a set this ideal
consists of polynomials f =

∑p+r−1
n=0 fnx

n with fn = 0 for n < p and fn = fn+a

for p ≤ n < p+ r . The number of variables is reduced to a .
If r is prime we can repeatedly multiply by 1 + x to generate subideals. The ideal
(1 + x)kxpCrp [x] contains all polynomials such that fn = 0 for x < p and otherwise
ones appear in blocks of length at least k when considering the highest r coefficients
in a cyclic manner. That means this ideal is generated additively by the elements
xp+`(1 + x)k =

∑k
n=0 x

n+`+p for 0 ≤ ` < r .
The number of such sequences is given by the following lemma, we would like to
thank Richard Stanley for pointing out the necessary proposition in his book.

Lemma 77 Consider the free monoid of sequences generated by {0, 01k, 01k+1, . . . } .
With the exception of the words 1r for r ≥ k , this monoid contains all binary
sequences where ones appear in blocks of length at least k . This monoid is very
pure (i.e. it has unique circular factorization) in the sense of [31] with generating
function

F (x) = x+
xk+1

1− x.

By Proposition 4.7.13 in [31] it follows that the generating function for cyclic words

63

Attacks on Semigroup Actions

is given by

H(x) =
xF ′(x)

1− F (x)
=
x(1− x)2 + (k + 1)xk+1 − kxk+2

(1− x)[(1− x)2 − xk+1]

We use this lemma to calculate the sizes of the ideals for the case of C420
34 [x] that

can be mapped onto C[L] for L as in Section 3.4.1 for some values of k

k log2(|Ik|)
1 420
2 340.78
3 291.58
4 257.27
5 231.61
10 160.58
20 105.72
50 57.21

Table 4.2: Sizes of ideals Ik := (1 + x)kx34C420
34

The reductions on Crp [x] mentioned in the last example have further consequences for the
security of Protocol 62. The probability for the sum of two coefficients fi + fj is skewed.
Assume that Pr[fi = 0] = q for all indices i , it then follows that Pr[fi + fj = 1] = 1− q2

for i 6= j , since we work in the semiring C (isomorphic to R2,b see Example 11). This
can be used to solve the SAP in the reduction faster, since not all elements are equally
likely as solutions anymore.
Finding preimages under the map λx is done by the following considerations.

λ−1
x (f) = {[f1, f2, . . . , 0; fp+1, . . . , fp+r−1, 0]} if fp = 0

λ−1
x (f) = {[f1, f2, . . . , 1; fp+1, . . . , fp+r−1, 0],

[f1, f2, . . . , 0; fp+1, . . . , fp+r−1, 1],

[f1, f2, . . . , 1; fp+1, . . . , fp+r−1, 1]} if fp = 1

Similar observations hold for the reduction by the map λ1+x . In this case the number of
preimages in λ−1

1+x(f) depends on the element f .
Assume f ∈ (1 + x)kxpCrp [x] , then λ−1

1+x(f) is unique if the sequence [fp, . . . , fp+r−1]

seen as a cyclic sequence has no block of ones of length 2n or more. If a block of 2n

64

Attacks on Semigroup Actions

ones is present there are 2 possibilities for the corresponding coefficients in the preimage;
either a block of length 2n− 1 ones followed by a zero or two blocks of each n− 1 ones
and a zero.
In general it holds that if [. . . , fi, fi+1, . . .] = [. . . , 0, 1, . . .] then g = [. . . , gi, gi+1, . . .] =

[. . . , 0, 1, . . .] and if [. . . , fi, fi+1, . . .] = [. . . , 1, 0, . . .] then g = [. . . , gi, gi+1, . . .] =

[. . . , 0, 0, . . .] for all g ∈ λ−1
1+x(f) .

Remark 78
Let M be a semigroup that is a minimal right ideal. Any M action on a set X is not
susceptible to the reductions by non-units introduced in this chapter. The use of these
semigroups for cryptographic applications might be very restricted though unless the
subgroup M∗ is very big, enabling an adversary to perform the earlier discussed collision
attacks.
If the action is to be used in a Diffie-Hellman like protocol, see Protocol 54, then M is
commutative. It follows that M∗ = M \ {0} , which means that M consists of a subgroup
of size |M | − 1 and a zero element.
In non-commutative protocols like Protocol 36 the choices of elements will have to be
restricted to the subgroup M∗ to avoid generating the zero element as a result of the
multiplications involved in the protocol.
In both cases an adversary can therefore work in the subgroup M∗ .

Example 79
A structure that seems to resist reductions without being minimal is given by the
lattice L(`) of subspaces of a line ` = {1, . . . , n} consisting of n points. Consider the
commutative monoid (L(`),∨) where ∨ is the join operation on the lattice, i.e.

` ∨ x = `

x ∨ y =




x if x = y

` otherwise

∅ ∨ x = x

for all x, y ∈ ` . This monoid has n+ 2 elements and apart from a neutral element no
other units. The non-trivial minimal ideals in this case are the submonoids {{x}, `} for
x ∈ ` . We see that every reduction (λx,Φx, id) immediately leads to one of these minimal
ideals and every chain has just length two. Furthermore the preimages under the map λx

65

Attacks on Semigroup Actions

{1} · · · {n}

`

∅
Figure 4.5: Lattice of subspaces of a line `

are of sizes 2 and n respectively. Distinguishers based on these reductions perform very
poor since the set D1 will in almost all cases contain n of the n+ 2 elements and barely
help reduce the search-space.
But similar considerations as in Remark 78 hold for this case. The join of two independently
chosen elements in L(`) will with probability n2+n+3

(n+2)2
result in the element ` .

Conclusion In this chapter we have shown that reductions are a serious threat to the
security of a cryptosystem based on a semigroup action for many instances. Furthermore
we reason that semigroups that resist these reductions are very close to groups and
therefore susceptible to collision attacks.
For the action suggested in [18] we have not only presented a chain of reductions but
also provided methods of calculating preimages. Together with the skewed probability
for coefficients in the smaller semigroups these considerations form a viable means of
breaking the proposed semigroup action.

66

5 Design of a Key-Exchange Protocol

5.1 A Non-Commutative Semigroup Action Key-Exchange
Protocol

The cryptanalysis of Protocol 62 by Steinwandt and Suárez Corona motivated the devel-
opment of our own protocol based on [1]. This protocol is based on semirings and has
several advantages over the protocol by Monico, Maze and Rosenthal.

For our protocol we suggest using a semiring S as a base structure. The distributivity of
the multiplication naturally induces parametrized morphisms on the additive semigroup.

β : S × S → End(S)+

(L,R) 7→ βL,R := (M 7→ LMR).

We define γ1 : S × S → S, (A,B) 7→ AB and γ2 : S × S → S, (A,B) 7→ BA . It then
follows that

γ1(A, βB,D(C)) = ABCD = γ2(D,βA,C(B))

Furthermore let T be a finitely generated additive subsemigroup of (S,+) with generating
set T . Then the restriction of βL,R : T → S can be described as a list of its images of
the elements in T , i.e. (βL,R(t))t∈T .

Protocol 80
0.) Setup:

The parties agree on a semiring S and a set of generators T for T .

1.) Generation of public/private keys:
Alice and Bob choose their secret keys sA = (`A, rA) ∈ S × T and sB = (`B, rB) ∈
T × S where rA =

∑m
i=1 ti ∈ T and `B =

∑n
j=1 tj ∈ T with ti, tj ∈ T . Part of the

secret key is the decomposition of the elements rA and `B into the generators of T .
The public keys are the morphisms pA = β`A,rA and pB = β`B ,rB .

67

Design of a Key-Exchange Protocol

Alice Channel / Eve Bob

chooses private key chooses private key
sA = (`A, rA) ∈ S × T sB = (`B, rB) ∈ T × S

exchanging morphisms

calculates calculates
γ1(`A, βsB (rA)) γ2(rB, βsA(`B))

βsA

βsB

Figure 5.1: Protocol 80

2.) Exchange of public keys:
Alice and Bob transmit their public keys, as the images on the generators in T , i.e.
pA = (β`A,rA(t))t∈T and pB = (β`B ,rB (t))t∈T .

3.) Calculating the shared key:
Alice uses γ1 and pB to calculate

kA = γ1(`A,
m∑

i=1

β`B ,rB (ti)) = γ1(`A, β`B ,rB (
m∑

i=1

ti)) = γ1(`A, β`B ,rB (rA)),

Bob uses γ2 and pA

kB = γ2(rB,
n∑

j=1

β`A,rA(tj)) = γ2(rB, β`A,rA(
n∑

j=1

tj)) = γ2(rB, β`A,rA(`B))

Correctness follows from the definitions, as kA = `A`BrArB = kB .

Our protocol has several advantages over the previously described Protocol 36.
Since the secret keys contain an element that does not have to be constructed out of the
given generators, the size of the key space is not entirely tied to the number of generators
and the size of the public keys can be kept small. The public key consists of |T | elements
of S while the key space is of size |S × T | where as in Protocol 36 using similar notation
the key-space is of size |S| for the same size of public keys.
In contrast to Protocol 62 our protocol does not restrict the choice of secret keys to a
commuting subset instead the linearity of the action is used. This highly increases the
size of the key-space.

68

Design of a Key-Exchange Protocol

The SAP, that an adversary faces in Protocol 80, comes from the semigroup action
ϕ : (S, T op) × End+(T) → End+(T), ((s, t), f) 7→ (x 7→ s ∗ f(x) ∗ t) . As shown in
Section 3.3 it would not suffice to only find elements s ∈ S and t ∈ T that solve the SAP,
but a decomposition of t into a sum of the generators in T would be needed as well.

5.2 Semigroup Semirings

In this section we discuss an extensive class of semirings that could be used for our
protocol.

Definition 81 (Semigroup Semiring)
Let R be a semiring (with one and zero) and M a multiplicative semigroup. The
semigroup semiring R[M] is the set of all maps f : M → R (for infinite M we require
f to be of finite support). It is common to denote the image of x ∈M under the map f

by fx . We define addition on these maps componentwise

[f + g]x := fx + gx.

Multiplication of two maps is defined as the convolution

[f ∗ g]x :=
∑

yz=x

fy · gz

where we sum over all pairs (y, z) ∈M ×M such that yz = x . With these operations
(R[M],+, ∗) is a semiring.
A different notation represents elements of R[M] as R− linear combinations of the
elements of M . An elements f ∈ R[M] would then be

f =
∑

x∈M
fxx

i.e. the value of f at x is the coefficient for the element x . From this notation the two
operations described above naturally follow.
There are embeddings of M and R into R[M] if M is a monoid given by

x 7−→ 1R · x for x ∈M
r 7−→ r · 1M for r ∈ R.

69

Design of a Key-Exchange Protocol

We will from now on identify elements in M and R with their images under these
embeddings.

Example 82
i) If R is a field and M is a group then the structure of R[M] is studied in representation

theory of groups.

ii) The semiring Crp [x] from Example 76 is a semigroup semiring with coefficient semiring

C(R6) ∼= R2,b and semigroup 〈x〉�(xp = xp+r) . Similarly the semiring C[L] for
L ∈ Matn×n(R6) , with the same coefficient semiring C and semigroup 〈L〉 is a
semigroup semiring.

iii) Another example is the group ring Z7[S5] from Section 3.1.

Remark 83
If we use a semigroup semiring R[M] as a base structure in Protocol 80 we see that the
corresponding semigroup action problem is equivalent to solving quadratic polynomial
equations in R . Given g, k ∈ R[M] find f, h ∈ R[M] such that f ∗ g ∗ h = k and
h =

∑
t∈T rtt is an R-linear combination of the generators in T . For fixed m ∈

M consider the equation (f ∗ g ∗ h)m =
∑

abc=m fagbhc =
∑

abc=m fagb
∑

t∈T rttc =∑
abc=m

∑
t∈T fagbrttc = km . For every m ∈ M an adversary gains another quadratic

equation in the variables fa and rt .

5.3 Reductions of Semigroup Semirings

The semigroup action of Protocol 80 is defined by two-sided multiplication and we will
therefore have to consider reductions induced by morphism as in Example 72 as well as
reductions by non-units.
In the following we will consider different reductions that could be applied. First we want
to exclude certain classes of morphism that are common in semigroup semirings.

Lemma 84 Let a : M → N be a morphism of semigroups. Then there exists a unique
morphism A : R[M]→ R[N] such that A(m) = a(m) and A(r) = r .

Proof Define A : R[M]→ R[N] by

A(f)n :=
∑

x∈M
a(x)=n

fx

70

Design of a Key-Exchange Protocol

for all f ∈ R[M] , then it follows that

A(f + g)n =
∑

x∈M
a(x)=n

(f + g)x =
∑

x∈M
a(x)=n

(fx + gx) = A(f)n +A(g)n.

And for the convolution we see that

A(f ∗ g)n =
∑

x∈M
a(x)=n

∑

st=x

fsgt =
∑

s,t∈M
a(st)=n

fsgt =
∑

u,v∈N
uv=n



∑

s
a(s)=u

fs






∑

t
a(t)=v

gt




= (A(f) ∗A(g))n

Uniqueness follows from the morphism properties. �

It follows that the semigroup M should be congruence-simple to avoid having morphisms
other than the trivial ones. While the identity morphism on M clearly induces the
identity on R[M] the zero morphism, that maps M to a single element, does not induce
a trivial morphism A . In this case the map A is similar to the augmentation maps in
group rings that map elements in R[M] to elements in R by summing up all coefficients,
f 7→∑

m∈M fm . While in group rings this reduction can be avoided by working in the
kernel of this map, the augmentation ideal, we do not have the necessary structure in the
general case.
The finite congruence-simple semigroups S with |S| > 2 are either finite simple groups,
care of Theorem 65, or of the form described in Theorem 66. If M is not a group then it
has non-units m ∈ M . These can be interpreted as a multiplicative non-unit in R[M]

by the embedding described in Definition 81. The map λm then induces a reduction as
described in Proposition 74. It should be noted that even if m is an absorbing element in
M , its embedding in R[M] is not. In fact, if |mM | = 1 then the map λm is similar to
the augmentation map introduced earlier, in the sense that for all images λm(f) the only
non-zero coefficient is the sum of all coefficients of f .
Summing up, we see that M should be a finite simple group to avoid most reductions
mentioned above.

A similar extension of morphisms of the coefficient semiring exists.

Lemma 85 Let b : R → S be a morphism of semirings. Then there exists a unique
morphism B : R[M]→ S[M] such that B(m) = m and B(r) = b(r) .

To avoid a reduction by a morphism B the semiring R must be congruence-simple. If

71

Design of a Key-Exchange Protocol

R \ {0} has multiplicative non-units r ∈ R then their embedding into R[M] gives rise
to multiplicative non-units in R[M] by the embedding described in Definition 81. Even
if M is not a monoid the element r ·m for any m ∈M is a multiplicative non-unit in
R[M] . By Proposition 74 this gives rise to a reduction. A semiring without multiplicative
non-units apart from the zero element is called a semifield and it has been shown that in
the finite case apart from finite fields the only such structure up to isomorphism is the
boolean semifield R2,b presented in Example 11, see [8].
We conclude that R should be a finite semifield.

From now on, let G be a finite simple group and F be a finite semifield. A class of
non-units in F [G] that can be used for reductions is linked to subgroups of G .

Lemma 86 Let R be a semiring with zero and one, G a group and H < G a non-
trivial subgroup of G then the element δ(H) , the indicator function for the set H , is a
multiplicative non-unit in R[G]. Furthermore for all f ∈ R[G] it holds that δ(H) ∗ f is
invariant on right cosets of H .

Proof For every h ∈ H it holds that (δ(H) ∗ h)g =
∑

g′∈G δ
(H)
gg′ hg′ = δ

(H)
gh = δ(H) . And

for all f ∈ R[G] , h ∈ H and g ∈ G it holds that (δ(H) ∗ f)hg =
∑

g′∈G δ
(H)
hgg′fg′−1 =

∑
g′∈G δ

(H)
gg′ fg′−1 = (δ(H) ∗ f)g . �

It follows that elements in the right ideal δ(H) only have |G||H| free variables. To avoid
these reductions we would have to choose a group G without any non-trivial subgroups.
This limits the possible choices to the cyclic groups of prime order (Zp,+) .

Remark 87
The semigroup semiring R2,b[(Zp,+)] is isomorphic to the semiring Cp0 from Example 76
and the same reductions of course apply.

This leaves the group rings Fq[(Zp,+)] as possible candidates. However, in this case we
can simplify the semigroup action problem. Instead of looking for a pair f, h ∈ Fq[(Zp,+)]

such that f ∗ g ∗h = (f ∗h) ∗ g = k for given g, k ∈ Fq[(Zp,+)] we just solve the equation
j ∗ g = k for a j ∈ Fq[(Zp,+)] . This is equivalent to solving a set of simultaneous linear
equations in Fq by similar considerations as in Remark 83.

Conclusion We developed a key-exchange protocol that uses non-commutative semirings
as a base structure. We introduced an extensive class of such rings and analyzed different

72

Design of a Key-Exchange Protocol

parameter choices that would prevent an attacker from using the reductions introduced
in the previous chapter. We finally could show that for no choice of parameters the
introduced protocol could be secure under these conditions.

73

Bibliography

[1] Iris Anshel, Michael Anshel, and Dorian Goldfeld. “An Algebraic Method For
Public-Key Cryptography”. In: Mathematical Research Letters 6 (1999), pp. 287–
291.

[2] Matan Banin and Boaz Tsaban. “A reduction of semigroup DLP to classic DLP.” In:
IACR Cryptology ePrint Archive (2013), p. 707. url: http://eprint.iacr.org/
2013/707.

[3] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-
curve cryptography. url: http://safecurves.cr.yp.to/ (visited on 08/11/2014).

[4] Patrick Dehornoy. “Braid-based cryptography”. In: Group Theory, Statistics, and
Cryptography. Ed. by Alexei G. Myasnikov and Vladimir Shpilrain. Vol. 360. Ameri-
can Mathematical Society, 2004, pp. 5–33.

[5] W. Diffie and M.E. Hellman. “New directions in cryptography”. In: Information
Theory, IEEE Transactions on 22.6 (Nov. 1976), pp. 644–654. issn: 0018-9448.

[6] Taher ElGamal. “A public key cryptosystem and a signature scheme based on
discrete logarithms”. In: IEEE Transactions on Information Theory. Lecture Notes
in Computer Science 31.4 (1985). Ed. by G R Blakley and David Chaum, pp. 469–
472. issn: 0018-9448.

[7] Bernard Harris. “Probability Distributions Related to Random Mappings”. In: The
Annals of Mathematical Statistics 31.4 (Dec. 1960), pp. 1045–1062.

[8] U. Hebisch and H.J. Weinert. Semirings: Algebraic Theory and Applications in
Computer Science. Series in algebra. World Scientific, 1998. isbn: 9789810236014.

[9] J.M. Howie. Fundamentals of Semigroup Theory. LMS monographs. Clarendon
Press, 1995. isbn: 9780198511946.

[10] David Kahn. The codebreakers : the story of secret writing. New York: Scribner,
1996. isbn: 0-684-83130-9.

74

http://eprint.iacr.org/2013/707
http://eprint.iacr.org/2013/707
http://safecurves.cr.yp.to/

Bibliography

[11] Delaram Kahrobaei, Charalambos Koupparis, and Vladimir Shpilrain. “Public key
exchange using matrices over group rings”. In: Groups Complexity Cryptology 5.1
(2013), pp. 97–115.

[12] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography - Princi-
ples and Protocols. 1. Edition. CRC Press, 2007. isbn: 978-1-584-88551-1.

[13] Andreas Kendziorra. “Computational Aspects of Finite Simple Semirings”. PhD
thesis. University College Dublin, May 2012.

[14] T. Kivinen and M. Kojo. More modular exponential (MODP) Diffie-Hellman groups
for Internet Key Exchange (IKE). May 2003. url: http://tools.ietf.org/html/
rfc3526.

[15] KiHyoung Ko et al. “New Public-Key Cryptosystem Using Braid Groups”. In:
Advances in Cryptology — CRYPTO 2000. Ed. by Mihir Bellare. Vol. 1880. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 166–183. isbn:
978-3-540-67907-3.

[16] Ueli Maurer and Stefan Wolf. “The Diffie–Hellman Protocol”. In: Designs, Codes
and Cryptography 19.2-3 (2000), pp. 147–171. issn: 0925-1022.

[17] G Maze. “Algebraic methods for constructing one-way trapdoor functions”. PhD
thesis. University of Notre Dame, 2003.

[18] Gérard Maze, Chris Monico, and Joachim Rosenthal. “Public Key Cryptography
based on Semigroup Actions”. In: Advances in Mathematics of Communications 1.4
(2007), pp. 489–507.

[19] Ralph C. Merkle. “Secure Communications over Insecure Channels”. In: Commun.
ACM 21.4 (Apr. 1978), pp. 294–299. issn: 0001-0782.

[20] Christopher J. Monico. Semirings and Semigroup Actions in Public-Key Cryptogra-
phy. 2002.

[21] Cristopher Moore, Alexander Russell, and Leonard J. Schulman. “The Symmetric
Group Defies Strong Fourier Sampling”. In: SIAM J. Comput. 37.6 (Mar. 2008),
pp. 1842–1864. issn: 0097-5397.

75

http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc3526

Bibliography

[22] Cristopher Moore, Alexander Russell, and Leonard J Schulman. “The symmetric
group defies strong Fourier sampling”. In: SIAM Journal on Computing 37.6 (2008),
pp. 1842–1864.

[23] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information (Cambridge Series on Information and the Natural Sciences). 1st ed.
Cambridge University Press, Jan. 1, 2004. isbn: 0521635039.

[24] Fabien Peticolas. Electronic version and English translation of "La cryptographie
militaire" by Auguste Kerckhoffs. Jan. 12, 2014. url: http://petitcolas.net/
fabien/kerckhoffs/.

[25] S.C. Pohlig and M.E. Hellman. “An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance (Corresp.)” In: Information Theory,
IEEE Transactions on 24.1 (Jan. 1978), pp. 106–110. issn: 0018-9448.

[26] J.M. Pollard. “A monte carlo method for factorization”. In: BIT Numerical Mathe-
matics 15.3 (1975), pp. 331–334. issn: 0006-3835.

[27] J.M. Pollard. “Monte Carlo Methods for Index Computation (mod p)”. In: Math-
ematics of Computation 32.143 (1978), pages. issn: 00255718. url: http://www.
jstor.org/stable/2006496.

[28] Daniel Shanks. “Class number, a theory of factorization, and genera”. In: 1969
Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New
York, Stony Brook, N.Y., 1969). Amer. Math. Soc., Providence, R.I., 1971, pp. 415–
440.

[29] Peter W. Shor. “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”. In: SIAM journal on computing (1997), pp. 124–
134. arXiv: quant-ph/9508027v2.

[30] Vladimir Shpilrain and Alexander Ushakov. “The Conjugacy Search Problem in
Public Key Cryptography: Unnecessary and Insufficient”. In: Applicable Algebra in
Engineering, Communication and Computing 17.3-4 (Mar. 2006), pp. 285–289. issn:
0938-1279.

[31] R.P. Stanley. Enumerative Combinatorics. 2nd. Cambridge studies in advanced
mathematics v. 1. Cambridge University Press, 2002. isbn: 9780521663519.

76

http://petitcolas.net/fabien/kerckhoffs/
http://petitcolas.net/fabien/kerckhoffs/
http://www.jstor.org/stable/2006496
http://www.jstor.org/stable/2006496
http://arxiv.org/abs/quant-ph/9508027v2

Bibliography

[32] Rainer Steinwandt and Adriana Suárez Corona. “Cryptanalysis of a 2-party key
establishment based on a semigroup action problem”. In: Advances in Mathematics
of Communications 5.1 (2011), pp. 87–92.

[33] John M. Talbot and Dominic J. A. Welsh. Complexity and cryptography - an
introduction. Cambridge University Press, 2006, pp. I–XII, 1–292. isbn: 978-0-521-
61771-0.

[34] Jens Zumbrägel. “Classification of Finite Congruence-Simple Semirings with Zero”.
In: Journal of Algebra and Its Applications 07.03 (2008), pp. 363–377.

[35] Jens Zumbrägel. “Public-Key Cryptography Based on Simple Semirings”. PhD thesis.
Universität Zürich, 2008.

77

	Preliminaries
	Semigroups, Semirings
	Semigroup Actions

	Public-Key Cryptography
	Key Exchange Protocols
	Key-Exchange Protocols on Non-Commutative Structures
	Other Applications of Public-Key Cryptography
	Public-Key Encryption
	Digital Signatures

	Generic Attacks
	Shanks's Algorithm
	Pollard's Rho

	Pohlig-Hellman
	Quantum Algorithms

	Key-Exchange based on Semigroups
	Semigroup Discrete Logarithm
	Key-Exchange Protocols based on Semigroup Actions
	Comparison of Diffie-Hellman and Anshel-Anshel-Goldfeld
	Monico-Maze-Rosenthal Protocol
	Statistical Analysis of the Monico-Maze-Rosenthal protocol
	Steinwandt Suárez-Corona Attack

	Attacks on Semigroup Actions
	Brute-Force
	Time-Memory trade-offs for Semigroup Action Problems
	Pohlig-Hellman Reductions

	Design of a Key-Exchange Protocol
	A Non-Commutative Semigroup Action Key-Exchange Protocol
	Semigroup Semirings
	Reductions of Semigroup Semirings

